Exploiting Temporal Consistency to Reduce False Positives in Host-Based Collaborative Detection of Worms

WORM 2006

David J. Malan and Michael D. Smith Division of Engineering and Applied Sciences Harvard University

Contact malan@eecs.harvard.edu

Motivation
The speed of today's worms demands automated detection, but avoiding false positives is difficult.

Implementing Our Vision

snapshots: lists of syscalls executed during an 30-sec window anomalous behavior: similarity among snapshots

Implementing Our Vision

temporal consistency: similarity in behavior over time

I-Worm/Sasser.B

False Positives

They present two problems.

- 1) If we mistake a popular non-worm for a worm, we might declare an outbreak when there is none.
- 2) If we confuse a non-worm on one host with a worm on another, we might overstate an outbreak's severity.

Research Questions

Avoiding False Positives

- Can we avoid mistaking popular non-worms for worms?
 - explorer.exe is not a worm
- → Are non-worms, like worms, temporally consistent?
 - If so, what properties distinguish one from the other?
- → Can we detect processes with similar behavior on multiple hosts?
 - If so, we can detect a worm's outbreak.

Methodology

Wormboy 2.0: A Prototype of Our Vision

- Deployed wormboy. {EXE, SYS} on 30 real-world hosts running Windows XP with Service Pack 2
- Deployed wormboyD to one snapshot server.
- Monitored and analyzed 10,776 processes, including 511 unique non-worms (873 unique versions)

Source code to be available for download:

http://www.eecs.harvard.edu/~malan/

Defining Worm-Like Behavior

In prior work, we indentified τ and r.

- τ = degree (%) of temporal consistency (\geq 76% for worms)
- $r = rate (syscalls/sec) of syscalls' execution (\geq 64 for worms)$

- All worms in our prior work boasted $\tau \ge 76\%$ and $r \ge 64$.
- 17% of our non-worms (85 of 511) also boast $\tau \ge 76\%$ and $r \ge 64$.

Can we detect worm-like processes on multiple hosts?

For $\tau \ge 65\%$, we detect common processes at non-negligible rates. These rates of recognition (m/n) are **not** rates of infection (t)!

degree, τ , of temporal consistency (%)

Reducing the False Positives

We now also filter by r'.

 τ = degree (%) of temporal consistency (\geq 76% for worms) r = rate (syscalls/sec) of syscalls' execution (\geq 64 for worms) r' = rate (syscalls/sec) of network activity ($\geq \delta$ for worms)

- All worms in our prior work boasted $\tau \ge 76\%$, $r \ge 64$, and $r' > \delta$.
- 2.9% of our non-worms (15 of 511) pass this improved filter, down from 17% (85 of 511) previously.

But only 3 (1%) of those 15 are worrisome.

When do we suffer a false positive?

An apparent rate of infection of l > 13% is a red flag. This is **not** the same as our rate of recognition.

We suffer a false positive when we detect some non-worm on $\iota > 13\%$ of peers during a window.

Fewer than 1% (3 of 511) of our non-worms remain worrisome

We see high τ , r, r', and m/n for {ApntEx,explorer,OUTLOOK}.exe.

15

Conclusions

Collaboration among peers discourages false positives.

- High τ lends itself to high rate of recognition.
- Filtration by τ , r, and r' avoids most false positives.
- Future Work:
 - Combat high *i* for remaining 1% of non-worms.
 - Responses for true positives.
- Threats are discussed in paper.