One Big File Is Not Enough:

A Critical Evaluation of the Dominant Free-Space Sanitization Technique

Simson L. Garfinkel and David J. Malan

Division of Engineering and Applied Sciences
Harvard University

June 28, 2006

rm and DEL don’t actually delete information.

Che New York Times

Deleting is easy, but hard drive tells all

Investigators using digital forensic programs retrieve important evidence for court
cases.

Eric A&. Taub / New York Times

It was only a single digit in a 20-page
Microsoft Word contract between two patrtners,
but Scott Cooper earned his fee several years
ago when he found it

Cooper, a computer forensics expert, learned
that the numeral "1" had been scrubbed i some
later versions of this digital document.

Thiz gave his client, a patther ih a software firm
that had recently been sold, just a 5 percent
rather than a 15 percent share i the company. If
the change had gone undetected, the partner
would have recetved $32 million rather than his
rightfil 26 milion payout.

What the partner did not realize was that
digital data rarely goes away, even when erased.
"It 15 extremely difficult to completely delete all
evidence from a hard drive," says JTohn Colbert,
the cluef executive of Gudance Software, which
makes a widely used program that helps retrieve
digital ewdence.

There are a variety of ways to prevent data recovery:

XPhysical Destruction
http://edrsolutions.com/

XOverwrite every sector
http://dban.sourceforge.net/

XJust use the disk. [“Understanding Data Lifetime via Whole
System Simulation,” Chow et al., 2004]

http://edrsolutions.com/
http://dban.sourceforge.net/

Our research evaluates a common technique for selectively
overwriting deleted data.

v/Create “one big file.” (64K writes)
v/(Create “little files.”) (64K + 512 byte writes)

This approach is used by many disk sanitizers:

e Microsoft’'s CIPHER.EXE /W

e The Apple Disk Utility

e Russinovich’s “SDelete”(http://www.sysinternals.com/)

e Tolvanen and Trant’s “Eraser”’ (http://www.heidi.ie/eraser/)

If the adversary can read blocks through the disk drive’s API,
how effective is “one big file?”

http://www.sysinternals.com/
http://www.heidi.ie/eraser/

Our paper evaluates the effectiveness of vendor tools
and two “big file” approaches.

filed | filed

1. Slack space and free space. J

2. Experiment

3. Results

4. Improved design for file sanitization

The Free Space Sanitization Problem:

The hard drive has

and

Metadata

free space |

Free Space T

file2

file3

file4

metadata

file data

directory data

The Free Space Sanitization Problem:

Free Space
Free Space |

Metadata

% rm file3

Deleting files deletes the directory entry
but leaves the file’s data.

The Slack Space Sanitization Problem:

Sectors:

LTI

-

Cluster

Disks are read and written In sectors but allocated in
clusters.

The Slack Space Sanitization Problem:

Sectors:

e

-

Cluster

% download file1

Files can occupy an entire cluster.

The Slack Space Sanitization Problem:

Sectors:

o

—

Cluster

% download file1
% rm file1

When the file is deleted, the clusters are free for
reallocation.

10

The Slack Space Sanitization Problem:

New files cannot access the slack space behind existing

files.

Sectors:

| |

=~ Pt

Cluster Space

% download file1
% rm file1
% download file2

11

Writing a “big file” to the disk should overwrite the
unallocated sectors.

Free Space

Free Space

Metadata bigfile file4

% cp /dev/zero 'bigfile’

12

Writing a “big file” to the disk should overwrite the
unallocated sectors ...

Metadata E‘ bigfile file4

% rm file3

% cp /dev/zero 'bigfile’

...assuming that the “big file” can access all of the sectors.

13

We hypothesized that the “big file” could not access the

slack space.

Sectors:

bigfile

bigfile

e~ Pt

Cluster Space

% download file1

% rm file1

% download file2

% cp /dev/zero bigfile

14

We also hypothesized that the “big file” could not access
the metadata.

/

Journal

bigfile

-
Metadata

% rm file3

: : % cp /dev/zero 'bigfile'
v’ Old directory entries P J

v’Journals and Logfiles
v'Odd-sized clusters

15

Our experiment: Start with an “S” file.

This file contains all of the “slack space.”

16

Create a set of “A” and “B” directories and files.

Total "A" files: 440 sectors: 138,426
Total "B" files: 1280 sectors: 369,136

Total sectors on device: 1,000,000

File sizes range from 113 bytes to 1.5MB

b160

17

Delete the “B” files and directories.

root

N

VA e R e — e e e e e)

Total "A" files: 440 sectors: 138,426
Total "B" files: 1280 sectors: 369,136

Total sectors on device: 1,000,000

18

Create a big file.

|

root

al

——
N

a2

as80

WHJ

a2
i i

a3

C

a4

-

Total "A" files: 440 sectors: 138,426
Total "B" files: 1280 sectors: 369,136

Total sectors on device: 1,000,000

o
bigile —————————— —

4/48

f/SEN \

IS A\ : T

} —bigile_ >

19

Any “B” files that are found are not sanitized.

root |

..............
N e
— T ——— S _

Total "A" files: 440 sectors: 138,426
Total "B" files: 1280 sectors: 369,136

Total sectors on device: 1,000,000

Any “S” sectors that are found are slack-space.

20

We investigated two techniques:
bigfile and big+little.

bigfile
1. Open a file.
2. Write 64KB chunks until writes fail.

big+little
1. Do “bigfile” technique.
2. Open a file; write 512B chunks until fail.

3. Repeat #2 until new files cannot be created.

We also evaluated vendor tools where possible.

21

Note: We are not discussing

e Recovering data from swap space.
e Physical remapping of sectors by the drive.

e Recovering overwritten data.

We don’t consider these because they are not available
through the drive API.

22

Results: FAT32

Dir File “B” Data “S”
Technique (OS) names Names Sectors Sectors

bigfile (XP): 5 480 75 1,763
big-+little: 5 480 0 1,734
CIPHER.EXE) 480 0 1,734
bigfile (Mac OS) 5 1279 6 0
big+little 5 1279 0 0
Disk Ultility 5 1278 0 0
bigfile (Linux) 5 1278 0 1,734
big+little 5 1278 0 1,734
bigfile (FreeBSD) 5 1278 16 56
big+little 5 1278 0 0

Sanitization is inconsistent between implementations.
All implementations leave file names.

Resulis: NTFS

Dir File B Data “S”
Technique names Names Sectors Sectors

bigfile (XP) 5 1280 75 9
big-+little: 5 1273 75 0
CIPHER.EXE 5 1273 65 0
Eraser) 292 0 0
SDelete 5 1262 60 0

NTFS is harder to sanitize than FAT; tools are inconsistent.

24

Results: Linux
Dir File B Data “S”
FS Technique names Names Sectors Sectors
fat bigfile 5 1278 0 1,734
fat big+little 5 1278 0 1,734
ext2fs bigfile 5 1278 6 0
ext2fs big+little 5 1278 0 0
ext3fs bigfile 5 1280 3,567 224
ext3fs big-+little 5 1280 24 0
reiserfs 3.6 bigfile S 1281 1,460 96
reiserfs 3.6 big+little 5 1281 1,460 96
xfs bigfile 5 801 1,004 44
xfs big-+little 5 801 957 44

Journaled file systems are harder to sanitize.

25

Results: FreeBSD

Dir File B Data “S”
-S Techniqgue names Names Sectors Sectors
-AT bigfile 5 1278 16 56
CAT big+little 5 1278 0 0
UFS2 bigfile 5 1280 3,504 256
UFS2 big+little 5 1278 2,865 152

FAT is easier to sanitize than UFS.
“Little files” get many but not all sectors.

26

Mac OS provides an “Erase Free Space” feature.

Macintosh HD

066
@ & 4

Burn MNew Image Conve

=4 74.5 GB 5T980821
= Macintosh HD |

_“ simsong.sparseimag
[Z simsong

Erase Free Space Options

These options erase files deleted to prevent their recovery. All files that
you have not deleted are left unchanged.

@) Zero Out Deleted Files

Writes zeros over all the free space on your disk that deleted files might
occupy. This option provides good data security in a minimum amount of
fime.

=1 Mount Point: |
Format : Mac 05 Extended (Journaled)

B

ne, and click Erase.

disk empty. Erasing a
| the disk unchanged.
n before clicking

¥ ce button.

() 7-Pass Erase of Deleted Files

Writes data over all the free space on your disk seven times. This optian

provides a highly secure erasure of deleted files. & 7-Pass erase takes 7 times

longer than the time required for the Zero Out option.

ed))

() 35-Pass Erase of Deleted Files I

Writes data over the free space on your disk 35 times. This option provides

highly effective data security against the recovery of deleted files. It requires

35 times mare time to perform than the Zero Out option.
@ l: Cancel) W

T Erase Free Space.. TEECLTITy CIRTone . "N (" Erase)

Mumber of Files : 536,236

Capacity : 74.4 GB (79,892,106,240 Bytes)
Available: 21.9 GB (23,563,055,104 Bytes)

Owners Enabled : Yes Used : 52.5 GB (56,329,048,064 Bytes)
@ NMumber of Folders : 95,741

EFS eliminated all user data,
but left file names on journaled HFS.

27

Mac OS also provides a “Secure Empty Trash” feature.

File Edit View Go Window Help
About Finder

Preferences... 3,

Empty Trash... 4#&

[i ''m
Secure Empty Trash i Outline i

Master Canvases

I:l Master 1
>

_erase_options.pdf (1 page
4 | =
\ j

Services >

Hide Finder #H
Hide Others HH
Show All

If you choose Secure Empty Trash, you cannot recover the files.

Are you sure you want to erase the items in the
I .
N Trash permanently using Secure Empty Trash?

n
in IC Cancel) f—&l(—)
C

18

SET works, but is slow. (7 overwrites!)

28

Comparison of “secure delete” approaches

Remnant Remnant Remnant
Dir File B Data

~S Technique names Names Sectors
-AT SDelete 3 480 0
AT Eraser 0 0 0
NTFS SDelete 5 1262 0
NTFS Eraser 5 294 0
Mac OS Secure Empty Trash 1 43 0

29

Better ways to sanitize:

Implement “clean delete” in:

e ftruncate(), truncate(), and unlink()
(Linux and UNIX);

e NtDeleteFile() NtSetInformationFile(Windows).

Copy “allocated files” from drive A to drive B, then wipe A.

Background task that overwrites with NULSs:

e All sectors on free list.
e All sectors in slack space.
(Requires understanding of file system.)

30

Conclusions

One “big file” deletes nearly all of the “deleted” files, but:

.. many file names and times are left behind.

... sometimes, complete files can be recovered.

Journaled file systems are harder to sanitize.

Vendor-provided tools appear to work through the user-level API
and do not directly manipulate file system structures.

We believe that it is necessary to work at the file-system
level to properly sanitize.

31

