
One Big File Is Not Enough: A Critical

Evaluation of the Dominant Free-Space
Sanitization Technique

Simson L. Garfinkel1 and David J. Malan2

1 Center for Research on Computation and Society, Harvard University
simsong@acm.org

2 Division of Engineering and Applied Sciences, Harvard University
malan@post.harvard.edu

Abstract. Many of today’s privacy-preserving tools create a big file
that fills up a hard drive or USB storage device in an effort to overwrite
all of the “deleted files” that the media contain. But while this technique
is widespread, it is largely unvalidated.

We evaluate the effectiveness of the “big file technique” using sector-
by-sector disk imaging on file systems running under Windows, Mac OS,
Linux, and FreeBSD. We find the big file is effective in overwriting file
data on FAT32, NTFS, and HFS, but not on Ext2fs, Ext3fs, or Reiserfs.
In one case, a total of 248 individual files consisting of 1.75MB of disk
space could be recovered in their entirety. Also, file metadata such as
filenames are rarely overwritten. We present a theoretical analysis of the
file sanitization problem and evaluate the effectiveness of a commercial
implementation that implements an improved strategy.

1 Introduction

It is widely known that the Unix unlink() and Windows DeleteFile() system
calls do not actually overwrite the disk sectors associated with files that are
“deleted.” These calls merely remove the directory entries for the files from their
containing directory. The file sectors are added to the list of available sectors
and are overwritten only when they are allocated to other files. As a result, the
contents of these “deleted” files can frequently be recovered from free space or
slack space using forensic tools like EnCase [18] or The Sleuth Kit [6].1

While the ability to recover accidentally deleted files is useful, many users need
to erase files so that recovery is not possible. For example, an individual selling a

1 In this paper, we use the term free space to describe disk sectors or clusters of disk
sectors that are on the file system’s “free list” and can be allocated to newly-created
files. The term slack space refers to sectors that, while not currently allocated to files,
are not on the free list. On FAT file systems, a cluster might consist of eight sectors
but only the first sector might be used by a file. Because FAT allocates storage by
clusters, not sectors, there is no way for the remaining seven sectors in the cluster
to be allocated to a second file; these sectors are part of the slack space.

G. Danezis and P. Golle (Eds.): PET 2006, LNCS 4258, pp. 135–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

136 S.L. Garfinkel and D.J. Malan

laptop might need to remove confidential documents before relinquishing control
of the device. Alas, the tools for deleting files provided with most computers do
not satisfy this need.

One solution is to change operating systems so that files are actually overwrit-
ten when they are unlinked. A second is to provide special-purpose tools for that
purpose. A third is to provide users with tools that sanitize the free space on
their computers, so that already-unlinked files are actually eradicated. For this
last solution, a common technique is to open a file for writing and to write one
or more patterns to this file until the media is full. Figure 1 presents pseudocode
for this technique.

procedure bigfile:

char buf[65536]

f = open("/volume/bigfile", "w")

repeat until error writing file:

write(f, buf)

close(f)

if (bigfile+smallfile requested) run smallfile procedure

unlink("/volume/bigfile")

Fig. 1. Pseudocode for the “big file technique,” which involves creating one big file
that will (hopefully) overwrite all sectors currently on a volume’s free list that possibly
contain data from long-since “deleted” (i.e., merely unlinked) files. Since some file
systems limit the maximum size of a file to 232 − 1 bytes, in practice it is necessary to
create multiple big files until no new files can be created, then to delete them all.

procedure smallfile:

char buf[512]

i = 0

repeat until error opening file:

f = open("/volume/smallfile" + i, "w")

repeat until error writing file:

write(f, buf)

close(f)

i = i + 1

Fig. 2. Pseudocode for the “small file technique,” which involves creating numerous
small files that will (hopefully) overwrite regions of the file system that are too small
or fragmented to be allocated to the big file in Figure 1. This pseudocode should be
run following the close(f) function in Figure 1 and before the unlink() function.

Despite the popularity of this “big file” technique, there are reasons to suspect
that it leaves unscathed some sectors corresponding to deleted information. First,
while the big file might expand to occupy all data sectors on the file system, in

One Big File Is Not Enough 137

most cases it cannot overwrite file names or other metadata associated with
the unlinked files. Second, the big file cannot occupy “slack space” since these
sectors, by definition, are not on the free list. Third, file systems that use a log
or journal to achieve high reliability might not allow the big file to overwrite
the journal; overwriting the journal with user data would defeat the journal’s
purpose of providing disaster recovery.

Our analysis finds that the big file technique is highly effective, but not per-
fect, for erasing user data on the MSDOS, FAT, and HFS file systems. The
technique fails to erase many file names and other kinds of metadata. And
when applied to Linux’s Ext2fs, Ext3fs, Reiserfs, and XFS file systems, the tech-
nique fails—sometimes spectacularly. We found a modified technique, which we
call “Big+Small” and present in pseudocode in Figure 2, is dramatically more
effective.

2 Vendor-Supplied Tools

Tools exist for Windows and Mac OS alike that claim the ability to overwrite
disk sectors associated with files that have been previously deleted.

2.1 Windows’ CIPHER.EXE

Included with Windows XP and Windows Server 2003 (and available as a down-
load for Windows 2000) is CIPHER.EXE, a command-line tool for NTFS that
includes an “ability to overwrite data that you have deleted so that it cannot
be recovered and accessed” [8,9]. The program’s /w option “[r]emoves data from
available unused disk space on the entire volume.” [23]

We executed CIPHER.EXE /W on a 364MB ATA hard disk while tracing all of
the tool’s file system activity with Filemon for Windows 7.02 [22]. During our
trace, CIPHER.EXE appeared to:

1. Create and open a file for writing (called \EFSTMPWP\fil2.tmp);
2. Write 512KB at a time to the opened file in non-cached mode until the disk

was nearly full;
3. Overwrite portions of \$LogFile, \$BitMap, and \$Mft in non-cached mode;
4. Write 512KB at a time again to the opened file in non-cached mode until

one such write failed with an error indicating insufficient space;
5. Write only 512B at a time to the opened file in non-cached mode until one

such write failed with an error indicating insufficient space;
6. Create and open an additional file for writing (called \EFSTMPWP\0.E);
7. Write 8B at a time to the new file in cached and non-cached modes until one

such non-cached write failed with an error indicating insufficient space;
8. Repeat steps 6 to 7 (calling the files \EFSTMPWP\1.E, \EFSTMPWP\2.E, . . .)

until one such non-cached write and one such creation failed with errors
indicating insufficient space;

9. Overwrite additional portions of \$LogFile in non-cached mode;
10. Close and delete all opened files and their containing directory;

138 S.L. Garfinkel and D.J. Malan

11. Repeat steps 1 to 10 twice (calling the largest files \EFSTMPWP\fil3.tmp and
\EFSTMPWP\fil4.tmp).

All the while, CIPHER.EXE’s output indicated only that the tool was “Writing
0x00,” “Writing 0xFF,” and “Writing Random Numbers.”2

2.2 The Apple Disk Utility

Included with Mac OS 10.4 is a version of Apple Disk Utility [3] that offers the
ability to “Erase Free Space” in any of three ways: “Zero Out Deleted Files,”
“7-Pass Erase of Deleted Files,” or “35-Pass Erase of Deleted Files.”3 The tool
advises that “These options erase files deleted to prevent their recovery. All files
that you have not deleted are left unchanged.” We were not able to trace the
operation of this tool.

2.3 Third-Party Tools

Several third parties offer tools that claim the ability to wipe unallocated space
thoroughly (see Section 5). We tested two such tools: SDelete 1.4 [21], which
implements an algorithm that is similar to CIPHER.EXE’s, and Eraser 5.3 [16].

3 Experimental

We designed an experiment to evaluate the effectiveness of the big file technique
for sanitizing information in free and slack space using file systems created on
a “512MB”4 Cruzer Mini USB drive manufactured by the SanDisk Corporation
and on a virtual disk drive of precisely the same size that was mounted as a
Unix “device.” We used this procedure for each experimental run:

1. Every user addressable sector of the device or virtual drive was cleared with
the Unix dd command by copying /dev/zero to the raw device.5

2 The technique of writing a character, its complement, and a random number is
specified by the US Department of Defense Clearing and Sanitization Matrix which
is present in numerous DoD publications, including DOD 5220.22-M [12].

3 The number 35 is a reference to Gutmann’s Usenix paper, “Secure Deletion of Data
from Magnetic and Solid-State Memory” [19], which describes a procedure that
might recover data from magnetic media after that data had been overwritten and a
set of patterns which could be written to the media to make this sort of recovery more
difficult. Although Gutmann has repeatedly said that there is no possible reason to
use the entire 35-pass technique described in the paper, many tools nevertheless
implement it.

4 Despite the fact that the Cruzer USB drive is labeled as having “512MB” of storage,
a footnote on the package revealed that the manufacturer used the letters “MB” to
mean “million bytes.” Most operating systems, in contrast, use the phrase “MB” to
mean 1024 × 1024 = 1, 048, 576 bytes. Thus, the Cruzer Mini USB drive that we
used actually had 488MB of storage.

5 This experiment specifically did not attempt to read previous contents of a block
after it had been overwritten. For the purposes of this experiment, we assumed that
once a data block was overwritten, its previous contents were gone.

One Big File Is Not Enough 139

2. The drive was formatted with the file system under study.
3. The drive was filled with one big file entirely filled with blocks of the letter

“S”. This file was then deleted.
4. We ran a program that we both designed and wrote called stamp that created

a predetermined set of directories and files on the drive. Some of the directory
and file names contained the letter “a” and are herein referred to as A
directories and A files, while others contained the letter “b” and are herein
referred to as B directories and B files.

5. The drive was unmounted and moved to an imaging workstation, where it
was imaged using aimage [15]. The resulting image is herein referred to as
the stamped image.

6. The drive was returned to the operating system under study, mounted, and
the B files and B directories were deleted.

7. The drive was unmounted and re-imaged. The resulting image is herein re-
ferred to as the deleted image.

8. The drive was returned to the operating system under study, mounted, and
the free-space sanitizer was run.

9. The drive was unmounted and re-imaged; the resulting image was subse-
quently examined for artifacts of sanitization.

It was necessary to configure Windows to treat the removable USB device as
a fixed drive so that we could format the device with NTFS.6

To facilitate analysis, each directory and file created in the file system was
given a unique name consisting of a 12-digit number and the letter “a” or “b”.
Files were created in a variety of file sizes from 129 to 1,798,300 bytes. A total
of 80 A files and 80 B files files were placed in the root directory. In addition, a
total of 10 subdirectories were created—5 A directories and 5 B directories. The
A directories were given 80 A files and 80 B files each, while the B directories
were given 160 B files. (No A files were placed in the B directories because the B
directories themselves were scheduled for deletion.) The contents of the files were
likewise written with a recognizable pattern consisting of 512-byte records that
contained the file’s number and byte offset. The final record of the file included
a flag indicating that it was the final record. Table 1 lists the directories and
files that were written to the media as part of this “stamping” procedure.

A specially written program called report analyzed the disk images for traces
of the B directory names, file names, and file contents. File names were also

6 Although some drivers might suppress multiple writes to a disk and only write the
final version of each block, this optimization would not affect our protocol as we
unmounted and physically removed the Cruzer USB device prior to each imaging
session. Also, while many flash storage devices employ “leveling” to ensure that indi-
vidual flash cells are not overly rewritten, such leveling necessarily happens beneath
the level of the block device abstraction, and not within the file system implemen-
tation. If leveling happened in the file system, then every file system would need to
be specially modified in order to operate with flash devices. This is clearly not the
case. To the file system, the USB device really does look like just another block-
addressable device.

140 S.L. Garfinkel and D.J. Malan

Table 1. The directories and files written to each file system as part of the “stamping”
procedure. The total number of 512-byte sectors is based on a calculation of file sizes
made by the stamp program, rather than an analysis of the actual space required on
the disk by the files.

entries # in # in total entries # 512-byte
in root A directories B directories in partition disk sectors

A dirs 5 n/a n/a 5 n/a

B dirs 5 n/a n/a 5 n/a

A files 80 80 (each) 0
400 (total) 0 480 138,426

B files 80 80 (each) 160 (each)
400 (total) 800 (total) 1,280 369,136

S -filled Sectors n/a n/a n/a n/a ≈ 450, 000a

a The actual number of “S” sectors depends on the file system overhead.

scavenged from the disk images using fls, part of The Sleuth Kit [6], and the
Unix strings command. While we were frequently able to recover all of the
B file names and B directory names from our disk partitions, we were never
able to recover all of the B file contents. This represents a minor failing of our
experimental technique, but does not invalidate our primary conclusion because
our technique can only err in failing to find information that is present on the
disk, rather than mistaking non-information for information.

We also scanned for sectors that were filled with the letter “S”. These sectors
literally contained data from a previous file (the first file created) that was not
allocated to any of the stamped files and could not be allocated to the sanitizing
big file. That is, these sectors were part of the slack space.

3.1 Windows XP with Service Pack 2

Windows XP with Service Pack 2 supports two native file systems: FAT32 and
NTFS. In each case the disk was zeroed on a Unix computer and then formatted
on the Windows system using Windows’ FORMAT.EXE.

There are two ways to delete files on Windows: they can be programmatically
deleted using the DeleteFile() system call; or they can be deleted through the
graphical user interface by dragging them to the “Recycle Bin” and then chosing
to “Empty Recycle Bin,” which causes each file in the Recycle Bin directory
to be deleted with the system call. In our tests we deleted each file with the
DeleteFile() system call.

We present the results for each file system in Table 2. Each column indicates
the amount of metadata or data for the B directories and files that could be
recovered using our image analysis technique. The “Data Sectors” column in-
dicates the number of sectors from B files that could be recovered. (A total of
405,865 B sectors were written.) Since each individual block of each file was
numbered, it was possible to note when a complete file could be recovered; that

One Big File Is Not Enough 141

information is presented in the “# Complete Files” column. We classified each
complete file as to whether it was “Small” (between 1 and 9 disk sectors, inclu-
sive), “Medium” (between 10 and 99 disk sectors, inclusive), or “Large” (100 or
more disk sectors). We also present the total number of complete files. Finally,
the “S” sectors column indicates the number of recovered sectors that were filled
with the letter “S”—this is the amount of recoverable information from the first
big file that now resides in the slack space.

For each file system, the row labeled “Stamped” serves as a control for the
recovery program; it shows the amount of B metadata and data that could be
recovered by our recovery utility after the data was written to the file system
but before any attempt had been made at deletion or sanitization. The row la-
beled “Deleted” shows the amount of metadata and program data that could
be recovered after the files had been deleted with the Windows DeleteFile()
system call. Finally, the row labeled CIPHER.EXE /W shows what could be recov-
ered after Microsoft’s sanitization utility was run. Similar results are reported
for SDelete, Eraser, and our own big file implementation.

Image analysis shows that on FAT file systems CIPHER.EXE was very but not
completely effective at overwriting deleted information on both FAT and NTFS
volumes. On FAT the program was very effective at overwriting sectors that
belonged to unallocated clusters, but the program was unable to overwrite slack
space at the end of partially allocated clusters: a total of 1,734 sectors were left
behind (the same number of sectors left behind by the Big+Little technique.)
On NTFS both CIPHER.EXE and Big+Little were effective at overwriting all of
the data in slack space.

A serious failing with both CIPHER.EXE and the Big+Little techniques is that
both left behind large number of metadata in the form of the names of deleted
files and directories. Of all the tools we tested, only Eraser made a serious at-
tempt to overwrite this information, and Eraser still left approximately did not
do a complete job.

3.2 Mac OS 10.4

Mac OS 10.4 includes native support for three file systems: Apple’s Hierarchical
File System (HFS), a modified version of HFS that supports journaling, and
Microsoft’s FAT file system (which Apple calls the “MSDOS” file system). We
evaluated each; testing the FAT file system under Mac OS allowed us to see how
a file system’s sanitization properties are impacted by different implementations.

As with Windows, there are two ways to delete files on the Macintosh: pro-
grammatically with the unlink() system call and through the graphical user in-
terface by dragging files to the Trash Can. Apple, however, has created two ways
to empty the Trash Can: an “Empty Trash...” command and a “Secure Empty
Trash” command (which uses Apple’s user-level srm Secure Remove command).
In this section we evaluate performance of Apple’s file system with unlink();
we evaluate srm in Section 4.3.

We hypothesized that the Erase Free Space command on Apple’s MSDOS
and HFS file systems would have results similar to running CIPHER.EXE under

142 S.L. Garfinkel and D.J. Malan

Table 2. Results of separately using the big file technique, Microsoft’s CIPHER.EXE

program, Eraser, and SDelete to sanitize the free space using Microsoft Windows with
Service Pack 2 FAT and NTFS file systems. The first two columns indicate the number
of deleted directory and file names recovered. The third column is the number sectors
recovered from previously-deleted files. The next four columns indicate the number of
complete files that could be recovered. Last is the number of unsanitizied slack sectors
that recovered. Smaller numbers are better.

B Metadata # B Data # Complete B Files “S”
Dirnames Filenames Sectors Small Medium Large Total Sectors

FAT
Stamped 5 1280 368,992 320 304 624 1,248 491,006
Deleted 5 480 368,992 320 304 624 1,248 491,006

Bigfile 4 480 75 0 2 0 2 1,763

Big+Little 4 480 0 0 0 0 0 1,734

CIPHER.EXE /W 5 480 0 0 0 0 0 1,734

NTFS
Stamped 5 1280 369,056 305 304 624 1,233 478,240
Deleted 5 1280 369,045 305 304 624 1,233 478,240

Bigfile 5 1280 75 1 0 0 1 9

Big+Little 5 1273 75 1 0 0 1 0

CIPHER.EXE /W 5 1273 65 0 0 0 0 0

Eraser 5 294 0 0 0 0 0 0

SDelete 5 1262 60 0 0 0 0 0

Windows with the FAT file system, while HFS with journaling would be similar
to our results with Windows’s NTFS file system.

As Table 3 shows, the big file technique was once again highly successful at
erasing the free space on the partition formatted with the FAT file system. The
big file was also very effective at sanitizing the HFS file system, although a total
of 24 B sectors, including one complete medium-sized file, were left unsanitized.
The technique was less effective with the journaled version of HFS: 71 sectors
including 4 complete files were left behind. Presumably the few unsanitized sec-
tors correspond to those that were in the journal. We were surprised that the
unlink() call on the non-journaled version of HFS eradicated file names as well.
We confirmed the absence of deleted file and directory names by searching for
them with EnCase 5. Some, but not all, of the file names remain on the journaled
file system. We suspect that the names that are left behind are in the journal.

3.3 Linux 2.6.12

We tested an Ubuntu Linux distribution with a 2.6.12 kernel using our technique.
Ubuntu comes with many file systems; we tested vfat (FAT32), Ext2fs, Ext3fs,
Reiserfs 3.6, and XFS file systems. Results appear in Table 4.

One Big File Is Not Enough 143

Table 3. Test results of Mac OS 10.4.4 with Apple’s MSDOS, HFS, and Journaled
HFS file systems. The “Bigfile” row shows the results of sanitizing the “Deleted” file
system with our own program that creates a single big file, while “Erase Free Space”
shows the results of sanitizing with the Mac OS 10.4.4 Disk Utility. While the big file
technique does a good job overwriting the sectors associated with deleted files, Apple’s
Disk Utility does better.

B Metadata # B Data # Complete B Files “S”
DirnamesFilenames Sectors SmallMediumLargeTotal Sectors

Mac OS 10.4.6 “MSDOS” (FAT)
Stamped 5 1280 369,048 320 304 6241,248 484,512
Deleted 5 1280 369,048 320 304 6241,248 484,512

Bigfile 5 1279 6 0 0 0 0 0

Big+Little 5 1279 0 0 0 0 0 0

Erase Free Space 5 1278 0 0 0 0 0 0

Mac OS 10.4.4 HFS
Stamped 5 739 369,048 320 304 6241,248 468,736
Deleted 5 0 369,048 320 304 6241,248 468,736

Bigfile 5 0 24 0 1 0 1 0

Big+Little 5 0 0 0 0 0 0 0

Erase Free Space 5 0 0 0 0 0 0 0

Mac OS 10.4.6 HFS, Journaled
Stamped 5 739 369,050 320 304 6241,248 454,784
Deleted 5 739 369,050 320 304 6241,248 454,784

Bigfile 5 739 71 0 4 0 4 0

Big+little 5 739 2 0 0 0 0 0

Erase Free Space 5 739 2 0 0 0 0 0

Because there is no overwriting program provided with Linux, the big file tech-
nique was implemented with a specially-written program that created a single
big file filled with repetitions of the letter “E”. Strikingly, the big file left a large
number of B sectors—and in many cases complete files—when applied to Ext2fs,
Ext3fs, Reiserfs, and XFS file systems. With Ext3, roughly 1% of the user data
was left unsanitized by the technique, with 85 small and 91 medium-sized files
being recoverable in their entirety.

We also tested the improved “big file + little file” technique with the Linux
file systems.In all cases the improved technique did significantly better, but only
on the “vfat” file system did the technique erase all of the data; XFS was the
only file system on which metadata was affected at all.

3.4 FreeBSD 6.0

We tested FreeBSD 6.0 with the Unix File System version 2 (UFS2) and
FreeBSD’s support for FAT32. The big file left hundreds of complete files on

144 S.L. Garfinkel and D.J. Malan

Table 4. Results of applying our tests to the Ubuntu Linux distribution with the
2.6.12 kernel shows that the big file technique generally fails on Linux-specific file
systems. Tested file systems include Linux “vfat” (FAT with long file names), Ext2,
Ext3, Reiserfs, and XFS. The rows labeled “Bigfile” show the metadata and sectors
left unwritten after execution of the bigfile routine, while the “Big + Little” show
the amount remaining following the application of both techniques. In general, the
combination of the two techniques is more effective than the big file technique alone,
but it is not perfect.

B Metadata # B Data # Complete B Files “S”
Dirnames Filenames Sectors Small Medium Large Total Sectors

Linux vfat
Stamped 5 1280 369,048 320 304 624 1,248 489,982
Deleted 5 1280 369,048 320 304 624 1,248 489,982

Bigfile 5 1278 0 0 0 0 0 1,734

Big + Little 5 1278 0 0 0 0 0 1,734

Linux Ext2fs
Stamped 5 1280 369,048 320 304 624 1,248 455,970
Deleted 5 1280 369,048 320 304 624 1,248 455,970

Bigfile 5 1278 6 0 0 0 0 0

Big + Little 5 1278 0 0 0 0 0 0

Linux Ext3
Stamped 5 1280 369,048 320 304 624 1,248 439,308
Deleted 5 1280 369,048 320 304 624 1,248 439,308

Bigfile 5 1280 3,567 85 91 0 176 224

Big + Little 5 1280 24 0 0 0 0 0

Linux Reiserfs 3.6
Stamped 5 1281 370,451 64 304 624 992 421,661
Deleted 5 1281 370,358 64 304 624 992 421,669

Bigfile 5 1281 1,460 0 0 0 0 96

Big + Little 5 1281 1,460 0 0 0 0 96

XFS
Stamped 5 1282 370,635 320 304 624 1,248 470,451
Deleted 5 1283 370,125 320 304 624 1,248 470,451

Bigfile 5 801 1,004 0 0 0 0 44

Big + Little 5 801 957 0 0 0 0 44

the FreeBSD UFS2 file system—nearly 2MB of data on a 488MB device. The
technique also left a relatively large number of complete B files—both small and
medium-sized files. These small files might be stored directly in the UFS inodes
and thus occupy space not available to a big file. We do not have an explanation
as to why so many medium-sized files were recovered.

One Big File Is Not Enough 145

4 Beyond One Big File

Although the big file technique does a good job sanitizing file content from free
space, on every system we tested it fails to properly sanitize metadata. Here we
evaluate the problem of free space sanitization from a theoretical prospective,
discuss approaches for removing hidden information from computer systems, and
evaluate the effectiveness of Apple’s Secure Empty Trash file sanitizer.

Table 5. Results of testing FreeBSD 6.0 with FreeBSD’s native MSDOS and UFS2
implementations shows that the big file technique largely works on the FAT file system
but leaves some data behind on UFS2 file systems

B Metadata # B Data # Complete B Files “S”
Dirnames Filenames Sectors Small Medium Large Total Sectors

FreeBSD “MSDOS” (FAT)
Stamped 5 1280 369,048 320 304 624 1,248 484,680
Deleted 5 1280 369,048 320 304 624 1,248 484,680

Bigfile 5 1278 16 0 0 0 0 56

Big + Little 5 1278 0 0 0 0 0 0

FreeBSD UFS2
Stamped 5 1280 369,048 320 304 624 1,248 454,724
Deleted 5 1280 369,048 320 304 624 1,248 454,724

Bigfile 5 1280 3,504 152 96 0 248 256

Big + Little 5 1278 2,865 106 74 0 180 152

4.1 Sanitization Patterns

Garfinkel describes two design patterns or properties that can help address the
problem of hidden data in computer systems:
1. Explicit User Audit [14, p. 325]: All user-generated information in the

computer should be accessible through the computer’s standard user inter-
face, without the need to use special-purpose forensic tools.

2. Complete Delete [14, p. 328]: When the user attempts to delete informa-
tion, the information should be overwritten so that it cannot be recovered.

These patterns apply equally well to hidden data in file systems and other
data-holding structures. For example, there have been many cases in which
“deleted” data has been recovered from Adobe Acrobat and Microsoft Word
files [26, 29, 25]. These cases are a result of the Acrobat and Word file formats
not implementing Explicit User Audit and the failure of Microsoft Word to im-
plement Complete Delete.

As Section 3 shows, today’s operating systems do not implement either of
these patterns and this failing is not remedied by running existing free space
and slack space sanitization tools.

146 S.L. Garfinkel and D.J. Malan

4.2 Approaches for Removing Hidden Information

Let sn be disk sector n and f be an arbitrary file. The set Sf is then the set
of sectors s0 . . . sn that are used to hold f ’s data and metadata. If I is the
information in file f , then the process of creating Sf could be described by:

Sf ← s0 . . . sn ← I

Let SR be the set of disk sectors that correspond to resident files and their
metadata. Using this notation, the act of creating the new file f adds that files
sectors to the list of resident sectors. That is,

SR ← SR ∪ Sf .

Let SD be the set of sectors that correspond to deleted files. In today’s op-
erating systems, deleting a file does not overwrite the information that the files
contain; deleting a file simply moves that file’s sectors from SR to SD:

SR ← (SR − Sf)
SD ← SD ∪ Sf

The Explicit User Audit property can be satisfied simply by assuring that are
no sectors in the file system that are both hidden and contain data. That is, we
need to ensure that SD = ∅. There are four ways to achieve this result:

1. Allow no deletion. If nothing can be deleted, then the problem of hidden dirty
sectors will never arise. This approach ensures that SD = ∅ by forbidding
any modifications to SD.

2. Have the operating system explicitly clear sectors on the target operating
system before returning them to the free list. In this way is hidden data
never created. (Bauer and Priyantha describe such an implementation for
the Linux operating system [4].) This approach clears the sectors in Sf .

3. Create a second volume large enough to hold all resident files. Explicitly
clear all sectors on the second volume,7 then create a new file system on it.8

Recursively copy all of the files from the root directory on the target volume
to the root directory of the second volume.9 Discard the target volume and
treat the second volume as the target volume. Symbolically, this approach
copies SR to another volume and then destroys SD. This approach is similar
to a stop-and-copy garbage collection algorithm [34] and results in the only
data on the new target volume being data that could be explicitly reached
from the root directory of the original target volume.

4. Starting at the root directory of the target volume, recursively enumerate or
otherwise mark every sector number that is used for file data or metadata.
The sectors that remain will be the union of those sectors on the free list

7 e.g., dd if=/dev/zero of=volume.iso
8 e.g., mdconfig -a -t vnode -f volume.iso -u 0; newfs /dev/md0
9 e.g., cp -pR /volume1 /volume2

One Big File Is Not Enough 147

and those sectors that cannot be allocated but which do not currently hold
user data. These sectors are then cleared. Symbolically, this approach clears
the sectors in SD. This approach is similar to a mark-and-sweep garbage
collection algorithms [34]. Every sector that does not contain data is cleared.

These techniques have analogs when discussing data left in document files.
For example, the several cases in which confidential or classified information

has leaked in Adobe Acrobat files is almost certainly a result of the way that
Microsoft Word interacts with Adobe Acrobat’s PDF Writer when “highlighted”
words are printed. Microsoft Word allows text to be highlighted by selecting the
words and then choosing the “highlight” tool from the Word formatting menu.
Normally words are highlighted with the color yellow, which causes the words
to stand out as if someone had colored them with a yellow “highlighter” pen.
However, Word allows the color of the highlighting tool to be set by the user.

If the highlighter is set to use the color black, it can be used to redact informa-
tion visually from a Microsoft Word document—that is, the information that is
highlighted with black can not be seen on the computer’s screen, nor will it be vis-
ible if the document is printed. An examination of the printer codes generated by
Microsoft Word reveals why: Word highlights by first drawing a rectangular box
in the specified highlighting color, after which it draws on top of the box. When
the color black is used to highlight black text, the result is black text printed on a
black background, resulting in text that cannot be discerned. However, the text is
nevertheless present and can be revealed through a variety of means.

One approach for removing hidden data from a Microsoft Word document is to
select and copy all of the text, then to paste the text into a new document. This
technique, which was recently endorsed by the US National Security Agency [1],
is similar to approach #3 above. Unfortunately, the technique does not work
for included images or OLE objects, which must be handled separately. Current
versions of Microsoft Office also have a “Remove Hidden Data” option in their
file menu, although the mechanism of action is not documented.

4.3 Specific File Eradication Tools

An alternative to using the big file technique to sanitize disk sectors after files
are deleted is to use a tool that is specifically designed to securely delete confi-
dential information. Such tools typically use the file system rename() primitive
to overwrite the file name and use a combination of open(), write() and seek()
calls to repeatedly overwrite file contents. As previously noted, these techniques
may not be effective on file systems that use journals or log files.

We evaluated three such tools: SDelete’s file deletion capability, Eraser’s file
deletion capability, and the “Secure Empty Trash” command built into Mac OS
10.4.4. We found that SDelete did a perfect job removing the B sectors containing
data but that it left approximately one-sixth of the metadata associated with
the B filenames. Eraser left approximately 5% of the data sectors, including 78
complete files. Mac OS “Secure Empty Trash” command also did a perfect job
deleting data, but it did not delete all of the directory and file names: many
could be recovered. Details appear in Table 6.

148 S.L. Garfinkel and D.J. Malan

All of these commands suffer from usability problems. While free, both SDelete
and Eraser are third-party programs that must be specially downloaded and run:
we believe that most Windows users do not know that these commands exist.
Meanwhile, the implementation of Secure Empty Trash is incomplete. Although
the command appears on the Finder’s File menu, it does not appear on the Trash
Can’s context-sensitive menu (made visible by control-clicking on the trash can).
Chosing “Secure Empty Trash” locks the trash can so that it cannot be used
until the operation is finished. Secure Empty Trash is very slow—performing it
on the file system in Table 6 took over an hour, compared with seconds simply
empty the trash. (This is a result of Apple’s decision to overwrite each sector
with seven passes of random data.) Finally, if the user inadvertently empties the
trash, there is no way to go back and securely empty the trash.

Table 6. Mac OS 10.4.4 Journaled HFS with Secure Empty Trash

B Metadata # B Data # Complete B Files
Dirnames Filenames Sectors Small Medium Large Total

Windows XP FAT32
Stamped 5 1280 368,992 320 304 624 1,248

deleted with SDelete 3 480 0 0 0 0 0

deleted with Eraser 0 0 0 0 0 0 0

Windows XP NTFS
Stamped 5 1280 369,056 305 304 624 1,233

deleted with SDelete 5 1262 60 0 0 0 0

deleted with Eraser 5 294 0 0 0 0 0

Mac OS 10.4.4 Journaled HFS
Stamped 5 739 369,050 320 304 624 1,248

Dragged to Trash 5 739 369,050 320 304 624 1,248

Secure Empty Trash 1 43 0 0 0 0 0

5 Related Work

Although ours is the first work to vet the big file technique itself, there are
several works analyzing sanitization tools.

A study by Guidance Software, authors of EnCase, found specific problems
with Microsoft’s CIPHER.EXE: “All unallocated space was filled with random
values (which greatly affected file compression in the evidence file); however, the
cipher tool affected only the unallocated clusters and a very small portion of
the MFT; 10–15 records were overwritten in the MFT, and the majority of the
records marked for deletion went untouched) [sic]. The utility does not affect
other items of evidentiary interest on the typical NTFS partition, such as: file
slack, registry files, the pagefile and file shortcuts.” [30]

One Big File Is Not Enough 149

Geiger found defects in six counter-forensic tools [17]: Webroot Software’s
Window Washer 5.5 [31], NeoImagic Computing’s Windows & Internet Cleaner
Professional 3.60 [24], CyberScrub’s CyberScrub Professional 3.5 [11], White-
Canyon’s SecureClean 4 [32], Robin Hood Software’s Evidence Eliminator 5.0
[27], and Acronis’s Acronis Privacy Expert 7.0 [2].

Burke and Craiger found similar defects [5] with Robin Hood Software’s
Evidence Eliminator 5.0, IDM Computer Solutions’s UltraSentry 2.0 [20], Cy-
berScrub’s CyberScrub Privacy Suite 4.0, EAST Technologies’ East-Tec Eraser
2005 [13], and Sami Tolvanen’s Eraser 5.3 [16].

Chow et. al., studied the lifetime of such sensitive data as password and
encryption keys in the slack space of Unix-based computer systems using whole-
system simulation. They discovered that such information, if not explicitly
deleted, has a potentially indefinite lifespan [7].

One deficiency in our technique was that our stamped file systems did not
contain fragmented files, because all of the files were written to the disk in a
single operation. As noted by Rowe, creating realistic “fake” file systems is a
non-trivial problem [28].

Finally, throughout this paper we have assumed that overwriting a sector on a
hard drive with a single pass of zeros is sufficient to place the data previously in
that sector beyond the possibility of recovery with conventional tools. Although
Gutmann’s 1996 paper discussed the possibility of recovering overwritten data
using sophisticated laboratory equipment [19], the paper clearly states that the
techniques only work on drives that use now-obsolete recording techniques. In
a postscript added to the version of the paper that is available on the web,
Gutmann states that two overwrites of random data is more than sufficient to
render data irrecoverable on modern disk drives. While many researchers have
claimed that a well-funded adversaries can recover overwritten data, after more
than 10 years of searching we have been unable to verify or even corroborate any
such claim. Crescenzo et al˙ also discuss techniques for overwriting secrets such
as cryptographic key material. [10] In our opinion, such extraordinary measures
do not seem to be warranted for the vast majority of computer users.

6 Conclusion

Clearly, there are two simple ways to erase the contents of any file system. The
first is to physically destroy the storage device. The second is to erase every
sector of the device using a command such as dd.

The technique of using one big file to sanitize the free space of an active
file system has been widely implemented in many privacy-protecting and anti-
forensic tools. We have found that the technique is effective at removing the
contents of deleted files on FAT and NTFS file systems but that it rarely erases
file names. The technique is less successful on many Linux file systems, leaving
as much as 1.5% of user data unsanitized.

We found that the big file technique can be significantly improved by creating
numerous small files a sector at a time after the big file is created but before it is

150 S.L. Garfinkel and D.J. Malan

deleted, but that even this improvement leaves a significant amount of residual
information on many file systems.

The primary problem with the big file technique is that it sanitizes deleted
files as a side effect of another file system operation—the operation of creating
a big file. Results are inconsistent because the behavior of this side effect is not
specified. “A program that has not been specified cannot be incorrect; it can
only be surprising.” [33]

Privacy protection should be a primary goal of modern operating systems. As
such, they should give the user easy-to-use tools for deleting information. Apple’s
“Secure Empty Trash” is an example of such a tool, but its unnecessarily poor
performance is a usability barrier to its use. A better approach would be to build
this behavior directly into the unlink() and DeleteFile() system calls so that
all deleted files are properly overwritten.

The test programs developed for this paper, along with the disk images that
we created, can be downloaded from http://www.simson.net/bigfile/.

Acknowledgments

Simson L. Garfinkel is supported by a postdoctoral fellowship from the Center
for Research on Computation and Society at the Division of Engineering and
Applied Sciences at Harvard University. David J. Malan is funded in part by
NSF Trusted Computing grant CCR-0310877. We thank Microsoft for the copy
of MSDN that was used for the preparation of this paper.

We thank Michael D. Smith of Harvard University for his support of this work
and his review of this paper. We also thank Walter Bender, Scott Bradner, Jesse
Burns, Richard M. Conlan, Matthew Geiger, Peter Gutmann, Beth Rosenberg,
and the anonymous reviewers for their helpful comments on this paper.

References

1. Redacting with confidence: How to safely publish sanitized reports converted from
word to pdf. Technical Report I333-015R-2005, Architectures and Applications Di-
vision of the Systems and Network Attack Center (SNAC), Information Assurance
Directorate, National Security Agency, 2005.

2. Acronis, Inc. http://www.acronis.com/.
3. Apple Computer, Inc. Apple Disk Utility, 2006.
4. Steven Bauer and Nissanka B. Priyantha. Secure data deletion for Linux file sys-

tems. In Proc. 10th Usenix Security Symposium, pages 153–164, San Antonio,
Texas, 2001. Usenix.

5. Paul K. Burke and Philip Craiger. Digital Trace Evidence from Secure Deletion
Programs. In Proceedings of the Second Annual IFIP WG 11.9 International Con-
ference on Digital Forensics, Orlando, Florida, January 2006.

6. Brian Carrier. The Sleuth Kit & Autopsy: Forensics tools for Linux and other
Unixes, 2005.

7. Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum.
Understanding data lifetime via whole system simulation. In Proc. of the 13th
Usenix Security Symposium. Usenix, August 9–13 2004.

http://www.simson.net/bigfile/
http://www.acronis.com/

One Big File Is Not Enough 151

8. Microsoft Corporation. How To Use Cipher.exe to Overwrite Deleted Data in
Windows, July 2004.

9. Microsoft Corporation. Windows 2000 Security Tool: New Cipher.exe Tool.
http://www.microsoft.com/downloads/release.asp?releaseid=30925, March
2004.

10. Giovanni Di Crescenzo, Niels Fergurson, Russell Impagliazzo, and Markus Jakob-
sson. How to forget a secret. In 16th International Symposium on Theoretical
Aspects of Computer Science (STACS ’99), pages 500–509. Springer Verlag, 1999.

11. CyberScrub LLC. http://www.cyberscrub.com/.
12. Cleaning and sanitization matrix, January 1995. Chapter 8.
13. EAST Technologies. http://www.east-tec.com/.
14. Simson L. Garfinkel. Design Principles and Patterns for Computer Systems that are

Simultaneously Secure and Usable. PhD thesis, MIT, Cambridge, MA, April 26 2005.
15. Simson L. Garfinkel, David J. Malan, Karl-Alexander Dubec, Christopher C.

Stevens, and Cecile Pham. Disk imaging with the advanced forensic format, li-
brary and tools. In Research Advances in Digital Forensics (Second Annual IFIP
WG 11.9 International Conference on Digital Forensics). Springer, January 2006.
(To appear in Fall 2006).

16. Garrett Trant. Eraser. http://www.heidi.ie/eraser/ .
17. Matthew Geiger. Evaluating Commercial Counter-Forensic Tools. In Proceedings

of the 5th Annual Digital Forensic Research Workshop, New Orleans, Louisiana,
August 2005.

18. Guidance Software, Inc. EnCase Forensic.
19. Peter Gutmann. Secure deletion of data from magnetic and solid-state memory. In

Sixth USENIX Security Symposium Proceedings, San Jose, California, July 22-25
1996. Usenix. Online paper has been updated since presentation in 1996.

20. IDM Computer Solutions, Inc. http://www.ultrasentry.com/.
21. Mark Russinovich. SDelete, 2003.
22. Mark Russinovich and Bryce Cogswell. Filemon for Windows.
23. Microsoft. Cipher.exe security tool for the encrypting file system. January 31 2006.
24. NeoImagic Computing, Inc. http://www.neoimagic.com/.
25. Dawn S. Onley. Pdf user slip-up gives dod lesson in protecting classified informa-

tion. Government Computer News, 24, April 16 2005.
26. Kevin Poulsen. Justice e-censorship gaffe sparks controversy. SecurityFocus, Oc-

tober 23 2003.
27. Robin Hood Software Ltd. http://www.evidence-eliminator.com/.
28. Neil C. Rowe. Automatic detection of fake file systems. In International Conference

on Intelligence Analysis Methods and Tools, May 2005.
29. Stephen Shankland and Scott Ard. Document shows SCO prepped lawsuit against

BofA. News.Com, March 4 2004.
30. Kimberly Stone and Richard Keightley. Can Computer Investigations Survive Win-

dows XP? Technical report, Guidance Software, Pasadena, California, December
2001.

31. Webroot Software, Inc. http://www.webroot.com/.
32. WhiteCanyon, Inc. http://www.whitecanyon.com/.
33. W. D. Young,W.E. Boebeit, and R.Y.Kain. Proving a computer system secure. The

Scientific Honeyweller, 6(2):18–27, July 1985. Reprinted in Computer and Network
Security, M. D. Abrams and H. J. Podell, eds., IEEE Computer Security Press, 1986.

34. Benjamin Zorn. Comparing mark-and sweep and stop-and-copy garbage collection.
In LFP ’90: Proceedings of the 1990 ACM conference on LISP and functional
programming, pages 87–98, New York, NY, USA, 1990. ACM Press.

http://www.microsoft.com/downloads/release.asp?releaseid=30925
http://www.cyberscrub.com/
http://www.east-tec.com/
http://www.heidi.ie/eraser/
http://www.ultrasentry.com/
http://www.neoimagic.com/
http://www.evidence-eliminator.com/
http://www.webroot.com/
http://www.whitecanyon.com/

	Introduction
	Vendor-Supplied Tools
	Windows' CIPHER.EXE
	The Apple Disk Utility
	Third-Party Tools

	Experimental
	Windows XP with Service Pack 2
	Mac OS 10.4
	Linux 2.6.12
	FreeBSD 6.0

	Beyond One Big File
	Sanitization Patterns
	Approaches for Removing Hidden Information
	Specific File Eradication Tools

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

