
A R T I C L E

Computational thinking and assignment resubmission predict
persistence in a computer science MOOC

Chen Chen1 | Gerhard Sonnert1 | Philip M. Sadler1 | David J. Malan1,2

1Science Education Department, Harvard

Smithsonian Center for Astrophysics, Harvard

University, Cambridge, Massachusetts

2John A. Paulson School of Engineering and

Applied Sciences, Harvard University,

Cambridge, Massachusetts

Correspondence

Chen Chen, Science Education Department,

Harvard Smithsonian Center for Astrophysics,

Harvard University, Cambridge, MA.

Email: chen.chen@cfa.harvard.edu

Funding information

National Science Foundation, Grant/Award

Number: 1352696

Peer Review

The peer review history for this article is

available at https://publons.com/publon/10.

1111/jcal.12427.

Abstract

Massive open online course (MOOC) studies have shown that precourse skills (such

as precomputational thinking) and course engagement measures (such as making

multiple submission attempts with assignments when the initial submission is incor-

rect) predict students' grade performance, yet little is known about whether these

factors predict students' course retention. In applying survival analysis to a sample of

more than 20,000 participants from one popular computer science MOOC, we found

that students' precomputational thinking skills and their perseverance in assignment

submission strongly predict their persistence in the MOOC. Moreover, we discovered

that precomputational thinking skills, programming experience, and gender, which

were previously considered to be constant predictors of students' retention, have

effects that attenuate over the course milestones. This finding suggests that MOOC

educators should take a growth perspective towards students' persistence: As stu-

dents overcome the initial hurdles, their resilience grows stronger.

1 | INTRODUCTION

The massive open online course (MOOC) was formally introduced to

the internet in 2011 (Ng & Widom, 2012). By the year 2017, more

than 9,000 MOOCs have come into existence, hosted by more than

800 higher education institutions, serving more than 80 million

learners (Shah, 2018). MOOCs have no entry requirements and are

easy to access (Kop, 2011; Lee, 2017), have huge numbers of partici-

pants (Cohen & Soffer, 2015; Sharples et al., 2012), often partner with

prestigious higher educational institutions (Cusumano, 2014), and

charge a low or no fee for a wide range of materials, such as lecture

videos, online discussion forums, and assessments (Thompson, 2011).

Since their advent, MOOCs have been heavily discussed in academia

and the public (Anderson, 2013; Gaebel, 2013; Kovanovi�c, Joksimovi�c,

Gasevi�c, Siemens, & Hatala, 2015; Shen & Kuo, 2015). Advocates of

MOOCs contend that MOOCs are transformative (Brahimi & Sarirete,

2015), offering an affordable pathway towards the democratization of

higher education (Haggard et al., 2013; Jacobs, 2013; Belanger &

Thornton, 2013; Rice, 2014; Stich & Reeves, 2017). Researchers and

practitioners also anticipated that MOOCs would create a personal-

ized environment in which students can develop their own knowl-

edge, self-regulate learning pace (Cheng & Chau, 2013; Littlejohn,

Hood, Milligan, & Mustain, 2016; Milligan & Littlejohn, 2014), and

social network (Khalil & Ebner, 2014; Siemens, 2010; Shah, 2015).

However, because of its unsupervised teaching structure and its low

cost to enter and exit, students in an MOOC often form dispersed

communities (Gillani & Eynon, 2014), have highly irregular learning

trajectories (Fini, 2009; Guo & Reinecke, 2014; Milligan, Littlejohn &

Margaryan, 2013) and low retention (Balsh, 2013; Jordan, 2014;

Rovai, 2003).

The two general principles of improving MOOC retention, as

suggested by many researchers, are to (a) know and accommodate

students' background (e.g., their knowledge, experience, and motiva-

tion) before they start the course and to (b) promote students'

engagement (e.g., in assignments, viewing of video components, and

discussion) after they start the course (Adamopoulus, 2013;

Breakwell & Cassidy, 2013; Khalil & Ebner, 2014). This study specifi-

cally investigates two factors (one associated with each of the two

principles, respectively) whose effects on MOOC retention have not

been systematically studied before. In terms of student background,

we ask if precomputational thinking skills are associated with student

retention in an introduction to computer science (CS) MOOC. By

precomputational thinking skills, we do not mean prior computer pro-

gramming or coding skills because students are not expected to have
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learned about coding before the course. Rather, we mean a problem-

solving style that emphasizes algorithmic thinking. Could it be this

computational mindset, or is it the actual prior CS experience, that

plays a bigger role in novice learners' persistence in CS MOOC? In

terms of engagement, we ask if multiple assignment submissions

(enabled by the advancement in automatic and adaptive feedback fea-

ture that is widely adopted by computer science MOOCs to help stu-

dents incrementally improve their codes) are associated with student

retention in the same MOOC. Is multiple assignment submission a

sign of engagement that would promote persistence, or a sign of a dif-

ficult experience that would increase frustration and expedite drop-

out? Empirical answers to such questions can inform strategies to

help novices persist on MOOCs.

These questions are not only important within the MOOC frame-

work, but may also shed some light on issues that typically remain

under the surface in regular CS education. In traditional classroom set-

tings, the cost of dropout is high (losing tuition, credits, or a degree).

Dropping out because of a novice's cognitive dissonance with the

computational mindset may be considered ill-advised in light of these

costs, and the impulse to dropout may thus be inhibited. However,

because, in the MOOC setting, the cost of dropout is minimal, MOOC

dropout may be sensitive to a brief moment of frustration, the same

frustration that might be experienced by students in traditional class-

rooms, but not manifested in terms of dropout behaviour.

2 | LITERATURE REVIEW

Several studies have looked into the factors predicting retention in an

MOOC. Kizilces and Halawa (2015) found that the primary obstacle

to completion was the participants' time management and that the

key predictors for persistence were motivation, prior education level,

and prior experience in the subject field. Multiple studies have shown

that proxies of course engagement, such as video watching (He, Bai-

ley, Rubinstein, & Zhang, 2015), pageview, clickstreams (Kloft, Sti-

ehler, Zheng, & Pinkwart, 2014), peer interaction (Jiang, Williams,

Schenke, Warschauer, & O'Dowd, 2014), and teacher–student inter-

action (Gregori, Zhang, Galván-Fernández, & Asís Fernández-Navarro,

2018) can be used to predict dropout. Moreover, researchers have

shown that students' motivation (Xiong et al., 2015) and self-efficacy

(Jung & Lee, 2018) predicted their engagement or satisfaction (Joo,

So & Kim, 2018), which in turn predicted course persistence.

Research that examines pre-MOOC predictors for dropout has

been limited to drawing on information that is easy to obtain (Zhu,

Sari & Lee, 2018), such as demographic information (van de

Oudeweetering & Agirdag, 2018), course viewing, and activity history

(Cohen, 2017; Evans, Baker & Dee, 2016; Kahan, Soffer & Nachmias,

2017; Soffer & Cohen, 2018), general knowledge levels (Breslow

et al., 2013), self-reported motivation (Watted & Barak, 2018), or

other self-reported attitudes towards the course (Shapiro et al., 2017).

The only prior research, to the best of our knowledge, that looked into

the effect of pre-MOOC knowledge on MOOC persistence was con-

ducted by Chen et al. (2019) who showed that prior misconceptions

in astronomy negatively affected students' retention in the initial

stages of an astronomy MOOC, but not in the later stages. One rea-

son for the scarcity of research on the impact of prior knowledge on

course persistence is that it is difficult to measure or obtain students'

knowledge before they have learned the subject, especially for intro-

ductory level courses.

Previous research has linked learners' precomputational thinking

skills to their success in formally learning introductory computer pro-

gramming (Kazimoglu, Kiernan, Bacon, & Mackinnon, 2012).

Precomputational thinking skills do not require a learner to have any

programming knowledge, rather they are skills to “seek algorithmic

approaches to problem domains; [and show] a readiness to move

between differing levels of abstraction and representation; familiarity

with decomposition; separation of concerns; and modularity” (Barr &

Stephenson, 2011, p. 49). Research has shown that students often

acquire precomputational thinking skills in modelling and simulation,

as well as in gaming or other out-of-school activities (Kazimoglu et al.,

2012; Lee et al., 2011; Levy & Murnane, 2004; Seehorn et al., 2011).

We hypothesized that precomputational thinking skills would also

have a positive effect on students' persistence in an introductory CS

MOOC. If students in an MOOC setting, where interpersonal relation-

ships are distant and social belonging takes a longer time to stabilize

(Knox, 2014; Oleksandra & Shane, 2016), find a new language or a

new problem-solving framework to be counter-intuitive and hard to

adapt to, they may quickly identify themselves as not belonging to the

community and drop out in the initial stages. This hypothesis further

predicts that pre-existing computational thinking intuition would only

have an effect on dropout in early stages, not in later stages. As stu-

dents acquire core knowledge in the course and adapt to the new lan-

guage and way of thinking, we expect the mismatch between initial

intuition and the subject-specific framework to diminish and social

belonging to increase.

In addition to providing the opportunity to examine the effect of

computational thinking intuition on persistence in an MOOC, intro-

ductory CS MOOCs are a suitable testing ground for advancements in

the automatization of immediate feedback or hints (Gerdes, Heeren,

Jeuring, & van Binsbergen, 2017; Rivers & Koedinger, 2013; Rivers &

Koedinger, 2014; Vihavainen, Luukkainen & Kurhila, 2012). In a CS

MOOC, assignments can be easily designed not solely for assessment

and grading, but also for providing timely scaffolding so that students

can test their code interactively until it is correct (code is arguably

never “perfect”). Even if students' codes yield the desired result, they

can still receive adaptive feedback to improve the elegance and effi-

ciency of their code and algorithm. The “smart” (automatic, immediate,

and unsupervised) feedback gives students individual attention while

affording them the freedom to explore other possible solutions, which

is a key element that MOOC educators anticipated to deliver

technology-enhanced learning environment for effective self-

regulated learning and transform higher education (Bernacki, Aguilar &

Byrnes, 2011). Indeed, it has been well documented in MOOCs litera-

ture that students' increased engagement to be associated with posi-

tive learning outcomes (Hew, 2016; Soffer & Nachmias, 2018). In

particular, research has shown that students who make multiple

2 CHEN ET AL.



attempts to solve problems and improve their solutions in assign-

ments have higher grades in MOOCs (DeBoer & Breslow, 2014). Yet,

little is known about whether multiple attempts on assignments pro-

tect against future dropout. On the one hand, it is possible that multi-

ple attempts lead to frustration that expedites dropout. On the other,

they may be a sign of engagement or resilience that counteracts

dropout.

For this study, we used data about students' characteristics,

activities, and performance in a popular CS MOOC, to examine the

predictors of dropout. Besides a list of variables that have been

examined by previous research, such as demographic information,

motivation, general academic aptitude, and prior experience, we are

particularly interested in whether the students' precomputational

thinking level (a time-constant variable) and students' number of

attempts on assignments (a time-varying variable) that were tech-

nology enhanced by smart feedback predict students' dropout

behaviour and whether the effects of these predictors change

over time.

We hypothesized that (H1) students with higher precomputational

thinking score would be more likely to persist through the initial mile-

stones of the course, but that this effect would diminish over mile-

stones (interaction effect). We also hypothesized that (H2) multiple

attempts on an assignment would correlate with dropout rates. How-

ever, we did not specify the direction of this effect. If completion of

multiple assignments mainly indicated a high level of engagement,

students who made more attempts would more likely to persist; alter-

natively, if multiple attempts indicated a high level of frustration,

those who made more attempts would be more likely to drop out.

Lastly, we hypothesized that, as in earlier studies, (H3) students with

higher motivation and more prior experience would be more likely to

persist in the course.

3 | DATA AND METHODS

3.1 | Sample

A total of 422,799 individuals registered for the MOOC "Introduction

to Computer Science" (CS50x) (from HarvardX on the EdX platform)

from January 2013 to December 2014; however, only 28,350 of

those who registered filled in the presurvey, and 20,134 of them fin-

ished the presurvey, which was a prerequisite to gain access to the

course material. In this study, we consider those who finished the

presurvey as formal enrollees and only applied statistical analysis to

those formal enrollees. Not all participants followed the sequence

designated by the MOOC teaching team. Around 6% of the partici-

pants were samplers, meaning they skipped at least one milestone in

their sequence (e.g., someone could complete problem sets [psets]1,

2, and 5 and then drop out, skipping pset 3 and pset 4). This irregular

pattern is not suitable for a survival analysis framework and is

investigated in a separate study. In the analysis of this article, we

excluded the irregular participants, which reduced our sample size to

18,925.

The pretest (see Appendix A) included a 12-item precomputational

thinking skill test developed from a number of online sources by first

assembling 31 unique items thought particularly relevant to success a

CS course. These items were administered to 911 subjects using the

Amazon Mechanical Turk platform to estimate item parameters (item

difficulty and discrimination) and employing item response theory to

build a shorter, unidimensional test (Sadler et al., 2016). Of all items,

12 appeared to offer high vales of discrimination and a range of diffi-

culty. When administered as pretest in this study, the test performed

well with a Cronbach's alpha of .843. The average precomputational

skill test score was 0.75 (9 out of 12 questions, SD = 0.19).

Table 1 shows a brief course syllabus including the milestones

and their corresponding tests and course content.

Among the 18,925 individuals in the analytic sample, 78.2% were

male and 12.8% were female. The average age was 28.8 years

(SD = 9.9, ranging from 10 to 69), and 42.3% were living in a country

outside of the United States. 48.7% could speak more than one lan-

guage. 43.5% had a college degree as their highest educational level,

and 3.1% had an advanced degree. 38.4% of the enrollees were con-

currently going to school. The enrollees spent 6 hr/week, on average,

playing digital games (unrelated to the MOOC). 58.3% had some com-

puter programming experience prior to the MOOC. On average,

enrollees (including those with no prior knowledge) had some experi-

ence (more than none) with three programming languages. 43.3% of

the enrollees rated their familiarity with computer programming to be

not familiar at all or slightly familiar (rating 0 or 1 on a scale ranging

from 0 to 4), and 19.9% rated themselves to be very familiar or

extremely familiar (rating 3 or 4). 47.1% answered that they did not

have friends or family members who could give them programming

help. 67.2% predicted that they were very likely or extremely likely to

finish the course in order to attain a certificate.

3.2 | Outcome variables

On average, participants completed 1.5 psets; 966 (4.8% of all) partici-

pants finished all 8 psets. A total of 1,130 (5.6% of all) participants sub-

mitted their final exam, and 200 of them passed the final exam. If we

define completion of the MOOC as finishing all 8 psets as well as pass-

ing the final exam, then 152 (0.7% of all) had completed the MOOC. If

we relax the definition of completion to include anyone who omitted

pset 8, which was an optional pset, and submitted the final exam (not

necessarily passed the final exam), then 1.3% of the full sample had

completed the MOOC. Among all psets for the whole sample, 69.7%

were submitted only once, 15.8% submitted twice, and 3.1% submitted

five times, which was the maximum number of submissions.

Table 2 presents each of the outcome variables broken down by

key predictive variables. We also carried out hypothesis tests (t test or

chi-squared test) to determine if the two subcategories within each

predictor were significantly different from each other on each of the

outcome variables (boldness indicates p < .05). Hypothesis tests

showed that male students, students who have higher education, stu-

dents who have higher pretest scores, students who consider the
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completion of MOOC to be important (higher motivation), and stu-

dents who had more prior programming experience tended to finish

more psets, compared with their counterparts.

3.3 | Survival analysis

To model the dropout rate at a given milestone (milestones are psets

and the final project) as a function of predictors (prior experience, moti-

vation, etc.), we adopted a survival analysis approach. A survival analysis

has three important elements: event, time, and censoring. In our case,

event is student dropout (1 = dropout; 0 = completion) at a given mile-

stone, time is measured in milestones, and censoring occurs when a sub-

ject does not experience dropout during the entire MOOC period

(in other words, the student completes all milestones). Survival analysis is

analogous to logistic regression: The dropout event is a binary outcome

variable, milestone and other covariates are predictors, and the model

parameters can be interrelated in the fashion of a logistic regression.

As basic steps for survival analysis (see Singer & Willett, 2003),

we first calculated the hazard of dropout at each milestone. The haz-

ard function represents the proportion of the sample in each mile-

stone interval that dropped out during that interval:

h mj

� �
= Pr M= j½ jMi ≥ j�,

where h(mij) is known as the population discrete-time hazard, and Mi

represents the milestone period j when individual i experiences the

dropout event (e.g., for a student who drops out at the third mile-

stone, Mi = 3). The hazard function denotes that the probability that

the dropout event will occur at a certain milestone j for student i is

conditional on student i not having experienced the dropout event at

any time prior to j.

Next, we used a logit link function to link between the hazard and

a linear specification of predictors, similar to a logistic regression:

logith mij

� �
= α1Mij + β1X1ij + β2X2ij +…+ βpXpij + γ1Uij + interactions½ �:

In this function, M is the main effect of milestone. There are mul-

tiple possible specifications of the main effect of a milestone, such as

treating milestones as dummies (completely discrete time function), as

a linear main effect, or as nonlinear effect, such as quadratic function,

which would add the term α2M
2
ij to the equation above.

Figure 1 shows the predicted logit hazard at each milestone based

on the completely discrete time model without any covariates. In

essence, this model has each milestone as a dummy variable to predict

the logit hazard. This model will serve to diagnose the linear or

nonlinear trend of the logit hazard over time, so that we can justify a

more succinct specification of the effect of time. As shown in Figure 1,

a linear specification can successfully summarize the decreasing trend

through the seventh milestone. The logit hazard increases at the eighth

and ninth milestone. One option to model this overall trajectory is to

specify a quadratic (or even higher order) model; however, because the

eighth milestone was an optional pset and the ninth milestone was the

final exam, both of which were conceptually different from the first

seven milestones, we chose to model them as separate events. Hence,

we specified a partial linear and partial discrete model in which the first

seven milestones were specified as linear and the eighth and ninth

milestones were specified as dummy variables, such as

logith mij

� �
= log

h mij

� �

1−h mij

� � = α1Milestone_First_Seventhj
�

+ α2Milestone_Eighth + α3Milestone_Ninth�+ β1X1i

+…+ βpXpi + γ1Ui + interactions½ �,

where for each individual i at time j, when 0 < j < 8, then

Milestone_First_Seventh (hereafter MS) = j, Milestone_Eighth (hereaf-

ter M8) = 0, and Milestone_Ninth (hereafter M9) = 0; when j = 8, then

MS = 0 and M8 = 1, M9 = 0; and when j = 9, then MS = 0, M8 = 0,

and M9 = 1.

Predictors of interest in this model are the X variables and U. X

variables are time invariant variables, and they include age, gender,

education level, self-reported motivation to complete, prior experi-

ence, pretest (precomputation readiness test score), English fluency,

foreign status, extrovert personality, game hours, number of MOOC

completed previously, and the availability of extra help from friends or

at home. Such variables were only measured in the initial question-

naire (Milestone 1). They reflected students' initial status and were

considered time-invariant variables.

U is a time-varying predictor. In our case, there was only one

time-varying predictor, the number of submission attempts (hereafter

TABLE 1 A brief course syllabus showing the milestones and their
corresponding tests and course content

Release

week Milestone Test Content

0 NA Pretest NA

1 1 Pset-1 Data type; operators;

conditional statement;

loops

2 2 Pset-2 Functions; arrays; search;

sort; algorithms

summary

3 3 Pset-3 Recursion; hexadecimal;

pointers, call stacks,

dynamic memory

allocation

4 4 Pset-4 Data structure; defining

custom types; singly-

linked lists; hash tables;

tries

5 5 Pset-5 IP; TCP; HTTP; HTML;

CSS

6 6 Pset-6 Python; Flask

7 7 Pset-7 Flask; MVC; SQL

8 8 Pset-9 JavaScript; DOM; AJAX

9 9 Final project Individual project and

presentation
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submit-attempts) made in the previous pset. For example, at Mile-

stone 7, the value of submit-attempts is the number of submissions

one made for pset 6. This variable is only applicable starting from

Milestone 2, because, obviously, there was no prior pset before pset

1. Therefore, we specified two separate types of models. One type,

comprising two models (M1 and M2), excludes U so that we can

model the full range of time from Milestone 1 to Milestone 9. We will

rely on this model type to obtain a more accurate estimation of the

time invariant predictors. In the other type of models (M3 and M4),

we added U, while keeping all other terms from M1 or M2. However,

this model type ignored Milestone 1 and only included Milestones

2 to 9. We are only interested in the estimated effect of the time-

varying predictor in this model type. Although all other covariates are

controlled for in M3 and M4 as well, we will not delve into the param-

eters of these covariates, because the estimations of such parameters

in M3 and M4, when Milestone 1 information is omitted, are less

accurate than the estimations from M1 and M2.

The parameters (βs and γ) associated with the Xs and U stand for

the shift in the baseline logit hazard function (as depicted by the main

effect of a milestone), corresponding to unit differences in the associ-

ated predictors. We also considered interaction terms between pre-

dictors and milestones. This would allow different students to have

different shapes of the logit hazard function depending on their Xs

and U. When two groups (categorized by a predictor of interest, such

as gender) have converging logit hazard curves, it means that the two

groups have larger differences in dropout rates at earlier milestones

and smaller differences at later milestones (i.e., the effect of the pre-

dictor attenuates over time). If the logit hazard curves diverge

between two groups, it means that the group differences increase

over time. We can use a post generalized linear model (GLM) test to

F IGURE 1 Fitting the logit hazard of
dropout using a discrete time model, in
which each milestone is treated as a
dummy variable. As is apparent from this
graph, the first seven psets can be
modelled using a linear specification (see
regression line with a 95% confidence

interval), whereas the pset 8 and final
exam should be treated as distinct events

TABLE 2 The description of outcome variables (by row) broken down by key predictors (by column)

Full
sample Gender Education

Precomputation

Importance of completion Prior experiencereadiness test score

Male Female
Above
HS

HS or
below

Average or
above

Below
average

Very
important

Not very
important

Basic or
above

Never
program

Num of psets 1.5 1.64 1.12 1.59 1.42 1.37 0.98 1.58 1.39 1.91 1.14

Finish all

psets

4.8% 5.3% 3.1% 5.0% 4.5% 5.5% 3.1% 5.2% 3.8% 6.5% 3.20%

Submit final 5.6% 6.0% 4.4% 5.5% 5.7% 5.6% 5.5% 5.9% 4.8% 5.9% 5.30%

Pass final 17.7% 18.0% 16.4% 16.7% 19.4% 18.6% 15.4% 17.9% 15.7% 18.7% 16.60%

Complete

MOOC

0.7% 0.8% 0.5% 0.8% 0.7% 0.8% 0.6% 0.8% 0.6% 0.9% 0.60%

Sample size 20,134 15,672 4,412 9,841 8,426 14,504 5,630 11,929 5,875 10,217 9,917

Notes: Bolded numbers indicate that the two numbers in the respective category are significantly significant at the level of .05. The sample size of specific

categories may not match the full sample size on the left column, due to missing data.

Abbreviation: MOOC, massive open online course.
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examine if and at which milestone the two logit hazard curves con-

verge or diverge. The primary quantities of interest to us are the

parameters associated with Xs, U, and interaction terms, because

these would determine the outcome of our hypothesis testing.

Last, we re-express the logits as odds ratios and then as

probabilities for easier interpretation, based on the formulas:

Odds = elogit and probability = 1
1+ e− logit . For example, when logit = 0,

the odds ratio is 1:1, which means the odds of dropping out are the

same as the odds of remaining and, consequently, the probability of

dropping out is .5.

4 | RESULTS

Table 3 presents the parameters for two fitted models. The baseline

model (M1) included the main effects of time invariant predictors. We

converted the estimated parameters of the discrete model to odds

ratios and marginal probabilities (the change of the probability of

dropping out corresponding to one unit change in a specific covariate,

provided the other covariates are held constant at the mean, and the

milestone is held at the first milestone). We included education level,

self-reported English fluency, number of MOOCs completed previ-

ously, and availability of extra help in our model but did not present

these variables in the table because their effects were not statistically

significant. The second model (M2) included the interaction effects of

milestone with four predictors: pretest, CS experience, gender, and

age, respectively. We explored other interaction effect, but none of

them were statistically significant.

The last two models (M3 for main effects only and M4 adding

interaction terms) included the time-varying predictor, submit-

attempts, in addition to the same terms as in M1 and M2. Submit-

attempts did not have an interaction effect with any variable. For

reasons explained above, M3 and M4 omit Milestone 1 information,

which renders their estimation of time invariant covariates less accu-

rate. Therefore, we did not report the full M3 and M4 models in the

table but inserted the estimated submit-attempts coefficients from

M3 and M4 into the columns of M1 and M2 in Table 3 for a tidy

presentation.

The continuous variables—pretest, CS experience, computer

game hours, motivation, extrovert personality, and age—were stan-

dardized. MS and submit-attempts were not standardized, for ease of

interpretation.

The interpretation of the parameters is similar to the interpreta-

tion of a logistic model: β shows the amount of change in logit hazard

associated with one unit of change in the predictor, and the logit haz-

ard can be converted to an odds ratio. For example, in M1,

βmale = −0.423, which shows that the logit hazard for males was

smaller than the logit hazard for females by 0.423, controlling for

other covariates. This could further translate to an odds ratio of 0.655

(e-0.423 = 0.655), which means the odds of dropping out for a male

were 0.655 times those of the odds of dropping out for a female. In

other words, male students were less likely to drop out than female

students.

Similarly, students who reported to have higher motivation to

complete the MOOC had lower odds of dropout at each milestone,

compared with their counterparts. Students from outside of the

United States, students who self-describe as extroverted, and stu-

dents who spent more time playing computer games, had higher odds

of dropout at each milestone, compared with their counterparts.

These predictors did not have an interaction effect with milestones,

which means that changes in these predictors shifted the fitted line of

the logit hazard over milestones up or down, but did not change the

slope of the line.

M2 also contained four interaction terms. The main effect for

males was −0.423, the negative number showing that male students

had lower odds of dropout than did female students; however, the

interaction term was 0.064, a positive number that counteracted the

effect of maleness. Moreover, because the interaction term was multi-

plied by the milestones, the effect of maleness should be increasingly

offset as milestones increase. This led to different fitted line of logit

hazard over milestones for male and female students, with the female

starting off with a higher logit hazard (i.e., larger odds for dropping

out) than male students, and gradually converging towards the curve

of the male students, as the milestones increased. As shown by a post

GLM test, the logit hazards of the two groups were no longer signifi-

cantly different from each other by Milestone 5. Thus, gender was a

key predictor to predict drop out in the beginning of the MOOC, but

had no effect at all in the later part of the MOOC. Figure 2 illustrates

this interaction effect on the probability scale. The y axis in Figure 2 is

the probability of dropout rather than logit hazard of dropout for easier

interpretation. On a logit scale, the trajectory from Milestone 1 to

Milestone 7 was a linear trend; however, when converted to the prob-

ability scale (with covariates held at the mean), the trajectory becomes

curvy.

Other interaction terms (milestones with pretest, prior CS experi-

ence, and age) should be interpreted similarly. Figure 3 plots the prob-

ability of dropping out over milestones by above and below average

pretest scores.

A post GLM test showed that participants with above and below

average precomputational skill test scores converged at Milestone

5, and interestingly, participants with a lower pretest were more likely

to finish the final exam; participants with above and below average

prior CS experience converged by milestone 6; participants of differ-

ent age groups (below 18, 18–30, 30–45, 45–60, above 60) con-

verged at Milestone 4 (the younger cohorts had higher initial

retention).

Focusing on the time-varying predictor in M3, we found that

submit-attempts had a negative effect on the logit hazard of dropout,

meaning that the more attempts students made on a pset, the less

likely they were to drop out at the following milestone. Submit-

attempts did not have an interaction with milestone, which means

that, on a logit scale, groups with different submit-attempts had linear

and parallel trends of logit hazard over milestones. Figure 4 converted

logit to the probability scale and illustrated the predicted probability

of dropout over milestones by three groups with different submit-

attempts.
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5 | DISCUSSION

This study confirmed our key hypotheses about precomputational

thinking skills (H1) and multiple attempts in assignment submission

(H2). First, to answer H1, our result showed that pre-existing

precomputational thinking skills had a positive relationship with

persistence and that this effect decreased as students progressed

through the course milestones. Such an interaction effect with mile-

stones suggests that a mismatch between prior intuition and the

problem-solving framework in CS may pose an initial hurdle to partici-

pation, but that such a hurdle is temporary. This finding is strengthened

by an analogous finding about prior CS experience. Taken together,

TABLE 3 Survival analysis predicting logit hazard of dropout

Parameter estimates Odds ratio Marginal change in probability

M1 M2 M1 M1

MS −0.210*** −0.291*** 0.81 −0.069

0.009 0.026

M8 −0.479*** −0.713*** 0.619 −0.039

0.084 0.242

M9 1.927*** 1.097*** 6.868 0.277

0.123 0.381

Male −0.281*** −0.423*** 0.755 −0.017

0.042 0.076

Foreign status 0.272*** 0.259*** 1.312 0.059

0.032 0.032

Pretest −0.208*** −0.432*** 0.812 −0.027

0.017 0.032

CS experience −0.244*** −0.244*** 0.783 −0.058

0.029 0.029

Computer game hour 0.050*** 0.048*** 1.051 0.011

0.015 0.016

Motivation −0.095*** −0.094*** 0.909 −0.022

0.016 0.016

Extrovert 0.095*** 0.096*** 1.099 0.022

0.017 0.017

Age −0.044* −0.101*** 0.956 −0.025

0.017 0.029

Submit-attemptsa (for M3 and M4) −0.164*** −0.166*** 0.848 −0.041

0.022 0.022

MS × pretest 0.090***

−0.012

MS × CS-experience 0.023**

0.010

MS × male 0.064**

0.028

MS × age 0.022**

0.009

Constant 0.021 0.192***

0.049 0.073

N (invariant/varying)

Pseudo R2 (invariance/varying)

17792/13732 17792/13732

0.65/0.54 0.67/0.55

Abbreviation: CS, computer science.
aSubmit-attempts was only applicable to the time varying models, which omitted Milestone 1.

***p < .001; **p < .01; *p < .05.
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these results support the conclusion that prior course preparedness

(i.e., intuition and experience) does not determine students' persever-

ance constantly throughout the course. Students can adapt to the new

framework as they stick with the course even if this framework may be

counterintuitive in the beginning. This finding suggests two possible

approaches to preventing MOOC dropout in the early stages:

1. A gradual learning curve for beginners to adapt to computational

thinking styles before being exposed to the coding and problem

solving using specific programming languages. In fact, the course

has implemented a unit at the start of the course that introduces

computer programming using a visual programming language,

Scratch. Numerous studies have shown that graphical program-

ming languages are effective introductory languages for novices in

terms of computing attitudes and programming performances

(Chen et al., 2019; Bau, Gray, Kelleher, Sheldon, & Turbak, 2017;

Kelleher & Pausch, 2005;) by helping the students to focus more

on the logic rather than the syntax (Resnick et al., 2009). A Scratch

F IGURE 3 Plotting the fitted
probability of dropout by
precomputational skill test score

F IGURE 2 Plotting fitted probability
of dropout by gender
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session can potentially be used to target the precomputing intui-

tion about logic and algorithmic thinking to solidify students' pro-

gramming readiness. Future study should examine the

effectiveness of such a targeted pedagogical intervention on drop-

out prevention.

2. To explicitly encourage students to stay in the course even if they

find the content to be counterintuitive and to assure students that

they will adapt to the new framework and that their (lack of) back-

ground knowledge will not define their future experience and per-

formance as they progress. We expect such an approach to be

applicable to other factors that interact with time, such as prior CS

experience (new experience will overcome the lack of prior experi-

ence), age, and gender (may relate to self-ascribed stereotypes).

Second, to answer H2, we found that students who submit psets

multiple times were more likely to persist. In other words, multiple

submission is an indicator of engagement or resilience, and it does not

frustrate students or presage dropout. Automated and immediate

feedback is an important smart and special feature of online courses.

It has the potential to revolutionize assessment in higher education,

changing it from an evaluation and grading procedure to an experi-

mental exercise in which students are allowed to make mistakes, make

incremental improvements, and try out different scenarios. Prior

research has shown that students who take advantage of such fea-

tures earn higher grades (DeBoer & Breslow, 2014). Our study addi-

tionally shows that such features engage students to be more

persistent.

Based on this finding, we expect that pedagogical approaches

that explicitly encourage students to use a trial-and-error strategy,

testing different scenarios and experimenting with different solutions,

while being afforded adaptive and immediate scaffolding, will make

assessment not only more personalized and flexible, but also more

engaging and rewarding. Schophuizen, Kreijns, Stoyanov, and Kalz

(2018) highlighted eight key challenges that a successful MOOC must

address: online teaching, support, assessment, external target groups,

flexibility, quality, reputation, and efficiency. Schopheizen et al. (2017)

also called for a more centrally organized support from the MOOC

team to engage these challenges. Notwithstanding the importance of

centralized support, we are hopeful that decentralized approaches,

such as smart feedback, if combined with the proper pedagogy, have

the potential to successfully address some of the challenges, such as

support, assessment, flexibility, and efficiency.

However, we also anticipate a potential downside: It is possible

that students start to rely on the automated check tools provided by

the MOOC as an alternative to actually running appropriate compilers

themselves, and thus, they may end up lacking hands-on skills with

the latter. It is possible that students who heavily rely on adaptive

feedback and hints tend not to take the time (and the pains) to solve a

problem completely and independently. By frequently seeking hints,

students effectively reduce the difficulty level and/or the workload of

a course, and students who perceive the difficulty or workload of a

course to be low are more likely to remain in the course

(Adamopoulous, 2013).

This study also confirmed (H3) the conclusion from prior studies

(Kizilces & Halawa, 2015; Watted & Barak, 2018; Wen, Yang & Rosé,

2014; Xiong et al., 2015) that students with stronger motivation to

complete are more likely to persist. One might speculate optimistically

that students who were less motivated in the beginning would gain

interest in the subject as they learn more about the content and that

the disadvantage of low motivation would diminish over milestones.

However, our finding did not support such a speculation, because we

did not find motivation to interact with milestones.

F IGURE 4 Plotting the fitted
probability of dropout by the number of
submission attempts in the previous
one pset
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We did, nevertheless, find an interaction effect between prior

programming experience and milestones, which suggests that prior

knowledge only mattered in the initial stages, and that, once the stu-

dents picked up the content in the course, those without prior knowl-

edge became equally engaged as those with prior knowledge. This

finding, combined with the analogous interaction effect between mile-

stone and precomputational thinking, led us to revisit our understand-

ing of perseverance (or resilience).

Traditionally, students' perseverance was considered part of a

personality trait (Duckworth, Peterson, Matthews, & Kelly, 2007;

Rimfeld, Kovas, Dale & Plomin, 2016; Robertson-Kraft &

Duckworth, 2014) or a conscious choice that students made at the

beginning of an activity, based on their own motivation, expecta-

tion (Oxford & Bolaños-Sánchez; 2016; Prebhu, Sutton & Sauser,

2008), or self-efficacy (Bandura, 1977; Chemers, Hu, & Garcia,

2001; Multon, Brown & Lent, 1991). From this perspective, perse-

verance was conceptualized as a static parameter. This perspective

is partially supported by our finding that students' self-reported

motivation indeed had an effect on their perseverance and that its

effect was constant over time. Had we only measured students'

motivation, we would conclude that perseverance was substantially

determined by the students' self-motivation at the beginning of the

course. Nevertheless, we discovered that perseverance was par-

tially explained by students' subject preparedness, and such an

effect attenuated over the course milestones. This finding calls for

a growth, rather than a static, perspective on students' course per-

severance, at least in the MOOC setting. As student overcome the

initial hurdles, their perseverance grows stronger, possibly via

stronger self-efficacy.

Our study did not replicate the result from Greene, Oswald, and

Pomerantz (2015) that showed students with higher degrees of edu-

cation or students with more prior MOOC experience to be more

likely to persist. Our study also found the opposite result from Allione

and Stein's (2014) study that showed U.S. students were more likely

to dropout. In our case, by contrast, the U.S. students were more

likely to persist.

Caution should be taken when generalizing the result of this

study to other MOOCs because this study only examined one MOOC,

and the subject of CS programming was more technically difficult and

time demanding than other subjects, as was shown in its below aver-

age completion rate. Another limitation of this study was that we

omitted irregular participants, who made up 6% of the sample,

because survival analysis was not applicable to modelling people who

did not follow the same sequence. The irregular participants are an

interesting subsample as they may be auditors and samplers who

choose to learn the specific topics they are interested in, which in fact

reflects a special strength of MOOCs (DeBoer, Ho, Stump, &

Breslow, 2014).

The troubling news for proponents of the idea that MOOCs

might become a transformative force in higher education is that, in

the case of this MOOC, we found very high dropout rates. Never-

theless, one may detect also some good news and silver linings in

this study. In light of the continuing gender imbalance in pursuing

CS and CS-related careers (Bunderson & Christensen, 1995;

Cheryan, Plaut, Davies, & Steele, 2009; Jadidi, Karimi, Lietz, &

Wagner, 2018), it is encouraging that, by the second half of the

MOOC, females had overcome their initially higher dropout hazard

and participated in the course at no higher dropout rates than

those experienced by males.

6 | CONCLUSION

As reviewed in the introduction, numerous studies have shown that

precourse skills (such as precomputational thinking skills) and course

engagement measures (such as making use of auto-feedback features)

strongly predict students' grade performance. This study is, to the

best of our knowledge, the first to show that these factors strongly

predict students' persistence, at least in an MOOC setting. More

interestingly, we discovered that several precourse variables, such as

precomputational thinking skills, programming experience, and gen-

der, which were previously considered to be constant predictors of

students' retention, are actually not always equally effective. Their

impacts diminish over the course milestones. MOOC educators should

not only take a growth perspective towards students' knowledge and

skill development, but also a growth perspective towards students'

persistence: As students overcome the initial hurdles, their resilience

grows stronger.
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APPENDIX A.

Test items for precomputational thinking test (pretest):

#1. Grace thought of a number, added 7, multiplied by 3, took

away 5 and divided by 4 to give an answer of 7. What was the starting

number?

a) 2 b) 3 c) 4 d) 5 e) 6 f) 7

#2. Alan thinks of a number. He squares it, then takes away

5, next multiplies it by 4, takes away 7, divides it by 3 and finally adds

6. His answer is 9. What number did he start with?

a) 1 b) 2 c) 3 d) 4 e) 5 f) 6

#3. If the hour hand of a clock is turned anticlockwise from 2 p.m.

to 9 a.m., through how many degrees will it have turned?

a) 120� b) 135� c) 150� d) 165� e) 180� f) 205�

#4. What percentage of this shape is blue (to nearest percent)?

a) 60% b) 63% c) 66% d) 69% e) 72% f) 75%

#5. In a counting system used by intelligent apes,

A banana = 1;

6 is represented by an orange and 2 bananas;

An orange is worth half a mango.

What is the value of two mangos, an orange and a banana?

a)21 b)24 c)27 d)30 e)33 f)36

#6. You start in square E6 facing East. Move 3 squares forward.

Turn 90� clockwise, move two squares forward. Turn 180� anticlock-

wise. Move 5 squares forward. Turn 90� anticlockwise. Move

4 squares forward. Turn 90� clockwise. Move two squares backward.

What is the Y COORDINATE of the square you are now in?

a) 6 b) 7 c) 8 d) 9 e) 10 f) 11

#7. Using the table below, what is A4 multiplied by D3 divided by

C2?

a) 24 b) 26 c) 28 d) 30 e) 33 f) None of these

#8. Let i be an integer between 1 and 9, inclusive. The expression

(i > =1) and (i&lt;=5) is true when i has values:

a) 1 2 3 4 5 b) 2 3 4 c) 1 2 3 4 6 7 8 9 d) 6 7 8 9

#9. Select in the missing letter sequence: acbcd, acbcbcbcd,

acbcbcbcbcbcd, __________________________.

a) acbcbcbcbcbcbcbcd b) acbcbcbcdacbcbcbcd c)

acbcbcbcbcbcbcd d) acbcdacbcdacbcd.

#10. Select in the missing letter sequence: __________________,

ebcccdd, ebbccccdd, ebbbcccccdd, …

a) eccd b) ebcd c) eccdd d) ebccd

#11. Your job is to decide which of a set of given numbers is the

smallest. How many comparisons (of 2 numbers at a time) do you

have to make if you have 8 numbers?

a) 5 b) 6 c) 7 d) 8

#12. At a certain school, students receive letter grades based on

the following scale.

Which of the following code segments will assign the correct

grade for a given integer score?

Segment I.

if (score > = 92) grade = “A”;

if (score > = 84 AND score < = 91) grade = “B”;

if (score > = 75 AND score > = 83) grade = “C”;

if (score &lt; 75) grade = “F”;

Segment II.

if (score > 92) grade = “A”;

if (score > 84 AND score < 91) grade = “B”;

if (score > 75 AND score < 83) grade = “C”;

if (score < 75) grade = “F”;

Segment III.

if (score > = 92) grade = “A”;

else if (score > = 84) grade = “B”;
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else if (score > = 75) grade = “C”;

else grade = “F”;

a) II only b) III only c) I and II only d) I and III only e) I, II, and III

Additional notes about item selection:

We drew on several types and sources of questions to create the pre-

test. From the University of Kent Computer Programming Aptitude Test

(https://www.kent.ac.uk/ces/tests/computer-test.html), we took questions

on logical thinking, pattern recognition, and ability to follow complex proce-

dures, with the authors' kind permission. From Tukiainen and Mönkkönen

(2002), we adapted questions targeting mathematical and logical reasoning

and pattern recognition. From sample AP Computer Science Exam ques-

tions released by the College Board, we adapted questions on program-

ming in the Java. Inspired by the American Computer Science League

(ACLS) contests, we also adapted questions on calculating the values of

recursive functions. In the case of questions adapted from Tukiainen and

Mönkkönen (2002), the AP Computer Science Exam, and the ACLS, we

modified the numerical values, item format (all our questions were multiple

choice), or programming language. In this way, we generated a preliminary

pretest of 31 questions and evaluated it by administering it to 911 Amazon

Mechanical Turk (AMT) participants. Based on classical test theory and

item response theory analyses, we identified the top 12 questions, which

explained 83.8% of the variance in the total pretest scores. We used these

12 questions as the pretest given to CS50x students. The mathematical

reasoning, pattern recognition, and following complex procedures ques-

tions from the University of Kent Computer Programming Aptitude Test

and those based on Tukiainen and Mönkkönen (2002) were most predic-

tive and hence heavily represented in the CS50x pretest (seven items from

Kent; four items adapted from Tukiainen & Mönkkönen, 2002). One item

was a modified AP Computer Science Exam question.
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