
Standardizing Students’ Programming Environments
with Docker Containers

Using Visual Studio Code in the Cloud with GitHub Codespaces

David J. Malan
Harvard University
malan@harvard.edu

CCS CONCEPTS
• Social and professional topics→ Information technology
education; Computer science education; CS1; • Information
systems → Collaborative and social computing systems and
tools.

KEYWORDS
code, code editor, container, containerization, Docker, editor, inte-
grated development environment, IDE, programming, text editor
ACM Reference Format:
David J. Malan. 2022. Standardizing Students’ Programming Environments
with Docker Containers: Using Visual Studio Code in the Cloud with GitHub
Codespaces. In Proceedings of the 27th ACM Conference on Innovation and
Technology in Computer Science Education Vol 2 (ITiCSE 2022), July 8–13,
2022, Dublin, Ireland. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3502717.3532164

1 INTRODUCTION
For CS50 at Harvard University, we have long sought to provide stu-
dents with a standardized programming environment at term’s start
so that students can dive right into programming in C (followed by
Python), without having to install any software themselves or wres-
tle with any technical difficulties beyond those in their own code.
Toward that end, we have used, over the years, the university’s own
on-campus cluster of Linux systems, our own re-creation thereof in
the cloud, a client-side virtual machine (VM), and a browser-based
integrated development environment (IDE). In the first of those
models, we found ourselves pedagogically constrained by older
packages of software and lack of root access. And in all subsequent
models, we found ourselves all too technologically distracted from
teaching itself, having become our own system administrators.

In 2021, though, GitHub launched Codespaces [2], a cloud-based
version of Visual Studio Code (VS Code) backed by Docker con-
tainers (lighter-weight alternatives, in effect, to virtual machines).
Using Codespaces, we realized, not only could we provide students
with a standardized programming environment at term’s start, we
could also transition them at term’s end to a nearly identical client-
side installation thereof (so as to continue programming without
the course’s infrastructure thereafter), without having to administer

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9200-6/22/07.
https://doi.org/10.1145/3502717.3532164

the former ourselves. We thus developed a lightweight front end
to Codespaces for students, a web app that automates, using the
Codespaces API [1], the process of creating, within the course’s own
GitHub “organization,” one “codespace” (i.e., container) per student,
based on our own Docker image, using a .devcontainer.json
file [3], and redirecting them thereto, per Figure 1, with the con-
tainers themselves hosted by GitHub, per Figure 2. We deploy mid-
semester updates to that same image via a VS Code extension,
which prompts students to rebuild their container, preserving their
own files therein. By way of VS Code’s Remote Development ex-
tension pack [4], students can even run VS Code locally but still
connect via SSH to their container in the cloud. And, if comfortable
installing Docker locally, they can run their own container as well,
completely offline. Via a Visual Studio Live Share extension can
students share their codespaces with the course’s teaching fellows
(TFs), to help them troubleshoot bugs in real time, or even with
classmates, if collaborating on a project, as via pair programming.

Advantages. Not only do containers provide students with a
standardized environment, reducing technical difficulties and fre-
quently asked questions at term’s start, they also provide instruc-
tors with full control over the software in use and versions thereof,
additionally allowing instructors to deploy updates mid-semester.
Particularly for large courses with hundreds or even thousands
of students, containers allow staff to focus more of their time on
teaching than on technical support. And, coupled with text editors
that support extensions or plugins, containers allow instructors to
optimize students’ environment for learning, while still acquainting
students with industry-standard tools.

Disadvantages. Among the few downsides to date is that VS
Code’s current API for extensions is less featureful than would
be ideal pedagogically, and we have not been able to simplify VS
Code’s UI to the extent that we would like. We would prefer to hide
icons and buttons that we do not expect students will use (yet), lest
they distract early on.

In this session, we present our experiencewith Codespaces, along
with a live demonstration thereof, and argue in favor of precisely
this model: browser-based programming environments, backed by
Docker containers, as alternatives to clusters of servers or virtual
machines for students in introductory programming courses. Our
own adaptation of Codespaces has already been used by thousands
of students, both on campus and off, and is freely available to fellow
teachers and students beyond.

https://doi.org/10.1145/3502717.3532164
https://doi.org/10.1145/3502717.3532164
https://doi.org/10.1145/3502717.3532164


Figure 1: CS50’s adaptation of Codespaces provides students with a web-based version of Visual Studio Code, connected to a
Docker container running the course’s own image, its default UI simplified and enhanced for teaching and learning via the
course’s own extensions.

Figure 2: CS50’s adaptation of Codespaces. Users are routed via an application load balancer (ALB) to a web-based front end. A
database stores metadata like the IDs of students’ codespaces, while a GitHub repository stores backups of their codespaces’
files. GitHub hosts VS Code itself and provides users with codespaces, containers based on the course’s own image.

2 RESULTS
Since its debut in 2021, CS50’s adaptation of Codespaces has been
used by more than 80,000 users so far. Not only has VS Code atop
Codespaces supported our pedagogical goals of providing students
with a standardized environment for C and Python at term’s start,
it has also eliminated the need for system administration on our
end. Via our own Dockerfile and .devcontainer.js file can we
still customize students’ containers by pre-installing packages and
extensions. Not only has this solution allowed us to focus more
time on students, without nearly as much time spent on system
administration, it has also enabled us to provide students with an
experience that begins in the cloud but ends on their own PC or
Mac.

We argue, ultimately, that teachers elsewhere should consider
containerization as a compelling alternative to any cluster- or VM-
based environments, at least for introductory courses. Courses
requiring specialized architectures might still benefit from other
solutions. But just as containers have commoditized how applica-
tions can be packaged and deployed for production in industry, so
might containers standardize more easily than ever programming
environments for students.

APPENDIX
The course’s adaptation of Codespaces is freely available for fellow
teachers and students at https://code.cs50.io/. And the Dockerfile
and .devcontainer.json files that define students’ containers are
at https://github.com/cs50/codespace.

ACKNOWLEDGEMENTS
Many thanks to Brenda Anderson, Brian Yu, Carter Zenke, Doug
Lloyd, Glenn Holloway, Kareem Zidane, and Rongxin Liu for their
assistance with this work. And many thanks to Amazon Web Ser-
vices, GitHub, and Microsoft for their support of this work.

At the time of writing, this work’s author is consulting part-time
for GitHub as a Professor in Residence.

REFERENCES
[1] Codespaces API. 2022. https://docs.github.com/en/rest/reference/codespaces
[2] GitHub Codespaces. 2022. https://github.com/features/codespaces
[3] devcontainer.json reference. 2022. https://code.visualstudio.com/docs/remote/

devcontainerjson-reference
[4] VS Code Remote Development. 2022. https://code.visualstudio.com/docs/remote/

remote-overview

https://code.cs50.io/
https://github.com/cs50/codespace
https://docs.github.com/en/rest/reference/codespaces
https://github.com/features/codespaces
https://code.visualstudio.com/docs/remote/devcontainerjson-reference
https://code.visualstudio.com/docs/remote/devcontainerjson-reference
https://code.visualstudio.com/docs/remote/remote-overview
https://code.visualstudio.com/docs/remote/remote-overview

	1 Introduction
	2 Results
	References

