
Improving AI in CS50
Leveraging Human Feedback for Better Learning

Rongxin Liu
Harvard University

Cambridge, MA, United States
rongxinliu@cs50.harvard.edu

Julianna Zhao
Harvard University

Cambridge, MA, United States
juliannazhao@college.harvard.edu

Benjamin Xu
Yale University

New Haven, CT, United States
ben.xu@yale.edu

Christopher Perez
Harvard University

Cambridge, MA, United States
christopherperez@college.harvard.edu

Yuliia Zhukovets
Harvard University

Cambridge, MA, United States
yuliia@cs50.harvard.edu

David J. Malan
Harvard University
Cambridge, MA, USA
malan@harvard.edu

Abstract
In 2023, we developed and deployed AI-based tools in CS50 at
Harvard University to provide students with 24/7 interactive as-
sistance, approximating a 1:1 teacher-to-student ratio. These tools
offer code explanations, style suggestions, and responses to course-
related inquiries, emulating human educators to foster critical think-
ing. However, maintaining alignment with instructional goals is
challenging, especially with frequent updates to the underlying
large language models (LLMs). We thus propose a continuous im-
provement process for LLM-based systems using a collaborative
human-in-the-loop approach. We introduce a systematic evaluation
framework for assessing and refining the performance of AI-based
tutors, combining human-graded and model-graded evaluations.
Using few-shot prompting and fine-tuning, we aim to ensure our AI
tools adopt pedagogically sound teaching styles. Fine-tuning with
a small, high-quality dataset has shown significant improvements
in aligning with teaching goals, as confirmed through multi-turn
conversation evaluations. Additionally, our framework includes
a model-evaluation backend that teaching assistants periodically
review, ensuring the AI system remains effective and aligned with
instructional objectives. This paper offers insights into our methods
and the impact of these AI tools on CS50 and contributes to the
discourse on AI in education, showcasing scalable, personalized
learning enhancements.

CCS Concepts
• Social and professional topics → CS1; • Applied computing
→ Computer-assisted instruction; • General and reference
→ Evaluation.

Keywords
AI, artificial intelligence, generative AI, large language models,
LLMs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701945

ACM Reference Format:
Rongxin Liu, Julianna Zhao, BenjaminXu, Christopher Perez, Yuliia Zhukovets,
and David J. Malan. 2025. Improving AI in CS50: Leveraging Human Feed-
back for Better Learning. In Proceedings of the 56th ACM Technical Sym-
posium on Computer Science Education V. 1 (SIGCSE TS 2025), February
26-March 1, 2025, Pittsburgh, PA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3641554.3701945

1 Introduction
In 2023, we developed and integrated a suite of AI-based tools using
large language models (LLMs) into CS50, Harvard University’s
introductory course in computer science, to enhance the learning
experience for students both on campus and online [26]. LLMs such
as those based on Generative Pre-trained Transformers (GPT) are
advanced AI systems capable of processing and generating human-
like text, providing significant benefits in educational settings by
offering immediate, interactive assistance [17, 19, 36]. Our approach
approximated a 1:1 teacher-to-student ratio with tools like the
CS50 Duck, an AI-powered chatbot that offers 24/7 support. We
also employed the duck on Ed [6] to manage discussion forum
questions and utilized two Visual Studio Code (VS Code) extensions
for explaining code snippets and suggesting style improvements.

After testing with 70 students in Summer 2023, we expanded
our AI tools to several hundred on-campus students in Fall 2023
and thousands online. Feedback was positive, with 75% of students
using the tools frequently and 94% finding them helpful and effec-
tive [26]. By mid-November 2024, by way of a massive open online
course, approximately 211,000 students had used the duck, which
has processed 10 million queries at an average cost of $1.50 per
student per year.

However, our ongoing use of AI tools has revealed shortcom-
ings. A phenomenon that we might call “instruction dilution” has
led to AI responses misaligned with teaching objectives when the
system prompt (the set of instructions provided to the AI model
that outlines how it should behave and respond [28]) is too large
(e.g., our system prompts close to 1,000 tokens, containing overly
detailed instructions). For example, despite instructions to avoid
providing direct solutions to homework problems, the tools have
often generated examples that were overly helpful and, with minor
adjustments, could become a complete solution. Additionally, the
lack of a robust system for AI system performance evaluation has

https://doi.org/10.1145/3641554.3701945
https://doi.org/10.1145/3641554.3701945

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Rongxin Liu et al.

made it difficult to ensure the LLM responses aligned with student
and staff expectations.

To address these challenges and maintain alignment with teach-
ing goals, we propose the following solutions:

• Human-in-the-loop approach: Continuously integrating
student and instructor feedback into the AI system evalua-
tion and improvement process [18].

• Few-shot prompting: Providing a few example interactions
within the system prompt to guide the AI’s responses.

• Fine-tuning model: Adjusting a pre-trained model to bet-
ter align its responses with a curated dataset of example
interactions that reflect desired teaching behaviors.

This paper addresses issues with our first integration of AI into
CS50 and proposes a multifaceted approach for improvement that
is largely applicable to other pedagogical AI tools. By sharing our
methods and insights, we aim to contribute to the broader discourse
on AI in education and demonstrate how scalable, personalized
learning enhancements can be achieved through thoughtful AI
evaluation and integration.

2 Motivation
Integration of AI-based tools in education offers significant ben-
efits, as demonstrated by systems like CodeAid at the University
of Toronto, which provides programming support while avoiding
direct code solutions by using pseudo-code generation and line-
by-line explanations to foster deeper conceptual engagement [23].
However, such tools face challenges in aligning with subjective
pedagogical goals [38]. For instance, while CodeAid achieves 79%
technical correctness, it struggles with complex debugging tasks
and maintaining consistent pedagogical approaches across queries.
These challenges highlight the difficulty of ensuring AI systems
meet pedagogical standards, motivating our efforts to enhance the
CS50 Duck’s alignment with teaching objectives.

2.1 Our Pedagogical Goals
Cognitive science research has demonstrated that the student’s act
of discovery and inquiry are critical for information retention and
future problem-solving [2]. Computer science education should
aim to teach not only coding mechanisms but also the explanations
behind them [35], fostering student autonomy andmotivation in the
learning process. However, creating an AI tutor using existing LLMs
with such pedagogical goals in mind proves to be difficult. Current
tools like ChatGPT [29], trained to be helpful in conversations, focus
on providing immediate assistance, hindering deeper, long-term
student understanding [10]. Our goal has been to develop an LLM-
based system that, like a human teaching fellow (TF), promotes
problem-solving and learning through interactive engagement.

Our system architecture for the CS50 Duck can be summarized
as follows:

(1) Centralized AI Backend: The CS50 Duck is powered by a
web server, CS50.ai, that relays student messages to GPT-4o
hosted on Azure [16, 27, 32]. It serves as the central back-
end for all our AI-based tools, incorporating pedagogical
guardrails to ensure responses provide constructive feed-
back and guidance rather than outright solutions.

(2) Instructional System Prompt:We employ a comprehen-
sive system prompt that directs LLM behavior and corrects
outdated responses[28].

(3) Hallucination Mitigation: To improve AI response accu-
racy, we use Retrieval-Augmented Generation (RAG) [15],
whereby we process lecture captions and store them in a
searchable vector database [4], allowing the AI to reference
relevant information [30], reducing the chance of incorrect
or fabricated responses [12].

While our CS50 Duck functions satisfactorily overall [26], we
have identified key areas where it requires improvement.

2.1.1 Instruction Dilution. A major issue we identified is what we
might call “instruction dilution,” whereby the AI model fails to
adhere to guidelines in a complex system prompt. Similar issues
have been observed in other studies where LLMs struggle to fol-
low complex prompts because of the inherent limitations in their
instruction-following capabilities [25].

For example, despite explicit instructions to the CS50 Duck not
to generate direct code solutions for students, instruction dilution
sometimes leads to non-compliance, with the duck providing exten-
sive code blocks. A code block, in this context, refers to Markdown
code blocks detected in the generated output using patterns such
as ```c to indicate C code and ```python to indicate Python code.
Our analysis of 10 million chat messages between our students and
the duck revealed that approximately 2.1 million responses—22% of
all interactions—contained code blocks. At the conversation level,
defined as a sequence of user inputs and duck responses within a
single session, this percentage becomes 48%: around 635 thousand
out of 1.3 million conversations involved code generation.

Shifting from using OpenAI’s GPT-4 to GPT-4o [32] as our under-
lying model has increased the frequency of code block generation
unexpectedly, further highlighting the instruction dilution prob-
lem. Table 1 shows a comparison of the frequency of code block
generation before and after the model version update.

Table 1: Comparison of code block generation frequency
across models

Model Messages Code Blocks
Generated

Message
Level %

Conversation
Level %

gpt-4 6,487,201 1,326,273 20% 44%
gpt-4o 3,203,702 817,739 25% 56%

The high frequency of code block generation raises concerns
that students might rely too much on the CS50 Duck for answers,
without writing as much code of their own, which could poten-
tially prevent them from fully engaging with the problem-solving
process [22].

2.1.2 Ineffective Teaching Styles. Effective teaching involves not
only delivering content but also engaging students in a manner that
fosters understanding and critical thinking [20]. We argue, then,
that AI tutors should use language and tone that are supportive
and constructive without being overly directive.

Our analysis of the CS50 Duck’s message history data indicates
that AI models often provide direct answers, even when examples
or hints are requested. This directness can be seen in frequently

Improving AI in CS50 SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

used phrases such as “here’s an <example>” (used 1.9 million times)
and “here’s how you can <verb>” (used 210 thousand times out of
10 million messages). These phrases often lead to responses that
are overly prescriptive, providing complete solutions instead of just
guidance.

For instance, when the AI says “here’s a basic example,” we have
found that it often supplies a full answer to the student’s query.
When it claims to provide just a hint to a problem, it often lists
in-depth descriptions of next steps for the student to take. In similar
cases, a human TFmay instead ask leading questions for the student
to work their way to an answer or strategy themselves [9].

The CS50 Duck’s tendency to provide extensive code examples
or action items risks hindering students’ learning [8]. While this
amount of detail may be helpful in the short term, it undermines
the learning process of independent work [37]. At the current stage
of our project, we aim for our AI tools to imitate the behavior of our
best human TFs in guiding students to find solutions themselves
and prioritizing long-term learning.

2.1.3 Continuous AI Evaluation Challenges. Finally, we have lacked
a systematic method of evaluating the AI tutor’s qualitative per-
formance, which limits the visibility of the tool’s functionality and
hinders the ability to determine suboptimal performance. Updates
to the underlying AI model, made by OpenAI, can change behavior
in unforeseen ways; the shift from GPT-4 to GPT-4o increasing code
generation is an example. Furthermore, not only should we ensure
that new models do not cause pedagogical regressions, we also
want to guarantee that updates made to our own system prompt
work in helping to align the AI tutor with our pedagogical goals.
Because we have not had a structured evaluation framework, these
performance metrics have been difficult to measure, and having
TFs manually reviewing AI responses is time-consuming and not
scalable in large educational settings.

3 Solutions
To address these challenges, we propose a multifaceted approach
to improve the CS50 Duck: an evaluation platform to continuously
assess and refine performance and using techniques like“few-shot
prompting” and “fine-tuning” to emulate human-like teacher re-
sponses and improve the quality of interactions.

3.1 AI System Evaluation Platform
To systematically assess and improve the quality of our system
prompts, we developed an evaluation platform designed for prompt
refinement through structured feedback. This platform facilitates
pairwise comparisons of responses generated by two models to
the same student query, a widely recognized approach for eval-
uating LLMs [3]. The platform supports two types of evaluation:
one focused on single-turn responses, where users select the pre-
ferred response from two models (Figure 1), and another involving
multi-turn interactions, where users engage in conversations with
both models before determining their preference. The single-turn
evaluation requires no additional generation during the interaction,
while the multi-turn evaluation captures the dynamic nature of
conversational contexts.

The evaluation process begins with the creation of a dataset
containing student queries. For single-turn evaluation, each query

Figure 1: Interface for comparing single-turn AI responses,
enabling TFs to review and provide feedback on the CS50
Duck’s performance.

is paired with AI-generated responses from two models (like in a
“battle”). For multi-turn evaluation, a set of models to be evaluated
is provided, and the two models used to generate the compared
conversations are randomly sampled from this set per comparison
(like in an “arena”). These datasets are then uploaded to our evalu-
ation platform, where TFs evaluate each student query alongside
its corresponding AI replies, selecting the response they believe is
more pedagogically sound or indicating if there is no significant
difference. Additionally, TFs can provide written feedback for each
comparison, offering valuable insights into the AI’s performance.

For single-turn evaluation, automated assessments are also gener-
ated using another AI model [24]. These model-graded evaluations
of the same dataset are compared with the human-graded choices.
Once validated, the model-graded evaluations can be applied to
larger datasets of queries, significantly increasing the evaluation
scale while reducing the need for human labor.

3.2 Emulating Human Teacher Responses
To ensure the CS50 Duck generates responses akin to human edu-
cators, we focused on aligning its behavior with effective teaching
strategies using few-shot prompting and fine-tuning on curated
data.

3.2.1 Few-shot prompting. As a first step towards this approach,
we adopted a few-shot prompting technique. Few-shot prompting,
a method in natural language processing (NLP), involves providing
the language model with a few example interactions through the
system prompt or through an appended history of interactions
before generating a response, which helps the model align its replies
with the desired context and style [11][13].

3.2.2 Fine-tuning Model. However, there are some limitations to
the few-shot prompting approach. For one, since the examples have
to be provided to the LLM for every interaction, the size of the input
increases proportionally with the number of examples provided,
which means adding more than a few can be costly and exacerbate
instruction dilution. To address this challenge, we propose fine-
tuning a model specific to the purpose of a teaching assistant. Fine-
tuning involves adjusting the parameters of a pre-trained model

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Rongxin Liu et al.

to imitate the behavior of task-specific training data, which in our
case consists of student-tutor conversations.

4 Implementation Details
We focus on improving the CS50Duck’s effectiveness and alignment
with pedagogical goals through three primary strategies: incorpo-
rating few-shot prompting, fine-tuning the model, and utilizing a
model evaluation framework.

4.1 Fine-Tuning Dataset
To improve the model’s ability to provide contextually relevant,
human-like responses, we constructed a dataset consisting of 50
carefully curated examples of student-tutor conversations for the AI
to imitate. Of these, seven examples were multi-turn conversations,
each containing up to five student-tutor interactions.

The dataset was designed to encompass a diverse set of student
needs and employed teaching strategies supported by feedback
from previous TFs, ranging from requests for help with code gener-
ation (for which the CS50 Duck was expected to tactfully decline) to
debugging questions (for which the goal was for the duck to guide
students toward identifying and resolving issues on their own). Ad-
ditionally, the dataset included cases focused on enhancing general
understanding, for which we expected the duck to provide informa-
tive answers to support learning. Capturing the subtle variations
in these interactions proved challenging with few-shot prompting
alone, as it is difficult to encode such nuanced responses within the
confines of a single system prompt. However, the slightly larger,
fine-tuned dataset allowed us to better reflect the varied instruc-
tional strategies and adaptive tones necessary for effective tutoring.

4.2 Human and Model-Graded Evaluation
We employed a dual evaluation framework combining automated
evaluations with human-in-the-loop assessments.

(1) Human-in-the-Loop Evaluation: Human-graded evalu-
ation involve iterations of TFs reviewing AI-generated re-
sponses, selecting their preferred responses, and providing
detailed feedback for the AI system’s maintainers. On our
evaluation platform, administrators set up evaluation tasks
and assign them to TFs for evaluation, who will compare
how different models respond to the same student message
and choose which they prefer.

(2) OpenAI’s Eval Framework: We utilized OpenAI’s Eval
framework to automate this evaluation, which uses an LLM
to answer open-ended questions about AI-generated responses.
The framework allows for customized evaluation templates
tailored to our educational context [31, 34]. By using a cus-
tomized version of OpenAI’s “Battle” template, which com-
pares two responses against some subjective standard, we
use GPT-4 to compare responses to determine which is more
pedagogically sound. Our template starts with the question:
“Which response is from the better tutor?”

5 Results
5.1 Diagnosing Problems with Evaluation
In Summer 2024, we created a dataset comprising 50 student queries
submitted to CS50 Duck over the past year to test our evaluation
framework and potential improvements to our system prompt. The
dataset was broken down as follows: 15 queries on code generation,
15 on debugging, 10 on error messages, 5 on introductory coding
concepts, and 5 on conceptual CS questions. This distribution re-
flected the typical questions posed to CS50 Duck while emphasizing
areas where we sought improvement.

We evaluated the initial AI-generated response to each query
using two distinct versions of our system prompt:

• V0: The current system prompt used by CS50 Duck.
• V1: An altered prompt aimed at guiding students more in-
teractively by posing leading or clarifying questions.

For instance, V1 includes additional instructions such as: “If the
student asks you a question about their code, do not diagnose errors
or provide future steps, but rather provide some encouragement and
ask them leading questions or hints that could help them diagnose
the error or find the next steps by themselves.” V1 does not include
any few-shot prompting or fine-tuning.

5.1.1 Human Evaluation. We asked TFs from previous iterations
of the course to complete the evaluation. We acquired data from
29 TFs, 24 of whom completed all 50 comparisons. Among them,
18 had at least two semesters of experience on staff, meaning they
taught both before and after the introduction of the CS50 Duck.

In total, 1,309 comparisons were assessed, with 801 by TFs with
at least two semesters of experience. We present the results in
Table 2.

Table 2: The distribution of choices made in the TF-graded
evaluation reveals a split between preference for V0 and V1,
suggesting areas for improvement in both. TFs with at least
two semesters of experience showed more preference for V1.

All Surveyed TFs Surveyed TFs (2+ Semesters)
V0 V1 No Diff. V0 V1 No Diff.

Generate Code 41% 54% 5% 38% 58% 4%
Debug Code 53% 46% 2% 46% 52% 3%
Error Messages 46% 47% 7% 40% 53% 7%
Intro Coding 33% 46% 21% 35% 45% 19%
Conceptual 26% 27% 46% 29% 30% 41%

We observe roughly equal instances of TFs preferring V0 over V1
and vice versa, with few instances of “No Difference.” TFs generally
preferred V1 for code generation and introductory coding questions.
Among TFswith at least two semesters of experience, the preference
for V1 was more pronounced, suggesting that teaching experience
prior to the introduction of CS50 Duck negatively correlated with
favoring a more helpful bot.

These evaluation results quantitatively confirmed issues that
TFs have anecdotally reported with the current V0 system prompt
over the past year. TFs who preferred V1 in certain comparisons
remarked:

• “I feel like if a code snippet is given [like in V0], students will
not read or think critically at all. In general I am anti-giving
these snippets, and in this case [V1] forces the student to think
and understand the code.”

Improving AI in CS50 SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

• “The habit of understanding and translating error messages is
important! [V0] digests the meaning of the error and applies it
for the student. [V1] is better; it merely provides context, and
prods for more.”

• The “CS50 Duck does the work of articulating what the code
does for the student in [V0].”

Furthermore, the variation in TF preferences between V0 and
V1, even within the same category or for the same student query,
underscores an overall dissatisfaction with both versions. TFs who
chose V0 over V1 critiqued that:

• “[V0] is basically a rephrase, but it’s more considerate to the
first ask. This can help during points of stress.”

• “[V0] gives too much help in one go! As an evaluator, I cannot
choose [V1] since I don’t know the follow-up help it gives after
the second input. This isn’t a ‘help start the problem!’ sort of
question so the CS50 Duck should at least give a direction or
little diagnosis, I believe.”

These comments highlight the need for a model that combines
the strengths of both versions. While V1 is a step in the right direc-
tion, it requires adjustments to adopt a more considerate tone and
provide support tailored to each situation. Our results demonstrate
that systematic evaluations can reveal issues that tool developers
might initially overlook and enable the creation of more tailored,
pedagogically-aligned AI tutors. We can now incorporate these
insights from the evaluation into future versions of the CS50 Duck.

The shortcomings of V1 also underscore the limitations of relying
solely on the system prompt to shape LLM behavior, suggesting
the necessity of incorporating few-shot prompting or fine-tuning
to achieve further improvements.

5.1.2 Model-Graded Evaluation. We subsequently conducted our
customized evaluation using OpenAI’s Eval framework, running
it 10 times on the same dataset. For each comparison, we selected
the most frequent response across runs as the model’s final choice,
splitting the choice uniformly in case of ties. The model chose V1
in 25.5 cases, V0 in 15 cases, and “No Difference” in 9.5 cases out
of the 50 student queries. The model demonstrated high internal
consistency, making the same choice in 8 ormore runs for 44 queries
and producing identical choices across all 10 runs for 34 queries.

We assessed consistency with human decisions by determining
whether the model’s choice for each query aligned with the devel-
opment team’s choice, the top choice of all TFs, or the top choice of
TFs with at least two semesters of experience. The model was con-
sistent with human preferences 82% of the time, indicating strong
alignment with human evaluators. Upon examining the reasoning
provided in both human and model evaluations, we found that in
all consistent results, the model’s justifications generally mirrored
human rationale. These evaluations highlighted that V0 tended
to offer assistance too readily, while V1 often failed to provide
sufficient support.

5.2 Confirming Improvement with Evaluation
We introduced two new versions of the CS50 Duck, incorporating
additional modifications to the system prompt used in V1:

• V2: Few-shot prompting with 4 example interactions in-
cluded in the system prompt.

Figure 2: The win rates of the multi-turn evaluation show
that TFs preferred conversations generated by the models
with few-shot prompting and fine-tuning over the original
version (V0) 60% of the time.

• V3: A fine-tuned model using GPT-4o-mini [33], trained on
50 example conversations over 5 epochs, or the number of
times the training algorithm iterates through the dataset.

At the time of the experiment, fine-tuning was available only for
GPT-4o-mini. To ensure the evaluation focused on differences in
our strategies rather than disparities between underlying OpenAI
models, we used GPT-4o-mini as the base model for all versions in
the comparison.

In Fall 2024, we then createdmulti-turn evaluation tasks using V0,
V2, and V3. These evaluations were conducted with participation
from 72 current TFs at Harvard University and Yale University, 40 of
whom were returning staff members. Across all participants, a total
of 480 comparisonsweremade, and the results are shown in Figure 2.
The win rates from pairwise model comparisons—measured as the
fraction of times model A is chosen when compared with model
B—indicate that both V2 and V3 are more likely to be chosen over
V0, with V3 showing a slight edge over V2.

To further analyze the results, we employed the open-source
code of ChatBot Arena [3] to create an Elo rating system [7] for
our models. The Elo rating system, originally designed for ranking
players in dynamic games such as chess, has been increasingly used
for LLM evaluation [1]. Despite having only 480 data points, the Elo
rates clearly ranked V0 lower than V2 and V3. While the estimated
Elo score for V3 was slightly higher than that of V2, the current data
was insufficient to narrow the confidence intervals enough to elimi-
nate overlap between them. Moving forward, since V0 consistently
ranked lower, we plan to prioritize future evaluations between V2
and V3 to refine them further.

Remarks left by TFs during the evaluations provided insights
into the reasoning behind their preferences:

• (Comparing with V0) “[V2] actually makes me talk to it and
figure it out myself.”

• (Comparing with V0) “Both a bit overexplanatory, but [V2]
more teacherly.”

• “[V3] attempts to walk the students through the code. I think
it is slightly better than [V0], because [V0] reveals too much
information, all at once.”

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Rongxin Liu et al.

Figure 3: The estimated Elo score of V0 was the lowest, with
its 95% confidence interval showing no overlap with the con-
fidence intervals of V2 and V3, ranking it last.

• “I think [V3] is better for the students to actively learn, but [V0]
seems to have better feedback.”

While this qualitative feedback is informative, it is important
to remember that these individual comments apply to specific in-
stances of generated conversations. For example, in some evalua-
tions, V3 appeared overly verbose compared to V0, leading evalua-
tors to note that V3 was occasionally too eager to provide complete
answers. However, this behavior was not consistently observed
across all conversations generated by V3. Thus, a single piece of
qualitative feedback should not be generalized to the entire model
but instead used to illustrate human preferences in particular cases.
That said, since the evaluated dataset that determined the initial
turn of the student-AI conversations was constructed to be repre-
sentative of past student queries, the overall qualitative feedback
should still be broadly generalizable to future student interactions.

5.3 Discussion
While most efforts in training and evaluating LLMs rely heavily on
extensive data, our findings align with studies highlighting that a
limited amount of high-quality data can achieve satisfactory results
and provide conclusive evaluations [21].

The two types of evaluations on our platform offer distinct ad-
vantages and drawbacks:

• Single-turn evaluation simplifies the process by not re-
quiring the generation of student-like inputs during the eval-
uation, making it significantly easier and faster for human
evaluators. Moreover, it enables model-graded evaluation
when results align with human preferences, facilitating effi-
cient assessments on larger datasets.

• Multi-turn evaluation, by contrast, more accurately re-
flects real-world student-AI interactions, providing a deeper
understanding of how models function as AI tutors.

While single-turn evaluation is beneficial for AI tutors focused
on providing immediate answers, we chose to prioritize multi-turn
evaluations. Multi-turn evaluations align more closely with our ob-
jective of developing a 24/7 assistant and better reflect howCS50 stu-
dents interact with the existing CS50 Duck. Although prior research
has explored model-graded evaluations in multi-turn contexts [5],

our efforts revealed challenges in generating sufficiently realis-
tic student-like queries to sustain meaningful conversations with
the AI tutor. Consequently, we concluded that human evaluators—
especially those who were recently CS50 students themselves—are
best suited for this task.

6 Future Work
For future improvements in CS50’s AI tools, we propose exploring
ways of reducing costs and expanding the CS50 Duck’s capabilities.

To reduce costs associated with using a fine-tuned model, we
plan to explore strategies such as prompt routing, which dynam-
ically selects a shorter, most suitable system prompt based on a
student’s query. Given that the model is already trained to imitate
provided conversation patterns, it can behave according to expec-
tations without extensive system prompts, thereby lowering token
usage and related expenses. We believe that carefully implementing
this approach with a fine-tuned model could significantly decrease
costs while maintaining high quality interactions.

Finally, we plan to tailor the CS50 Duck’s responses based on
individual student proficiency and learning styles. By incorporating
student profiles and learning analytics, the AI can provide personal-
ized, contextually appropriate guidance, ensuring students receive
the right level of challenge and support [14].

7 Conclusion
Over the past two iterations of CS50, the integration of AI tools in
the course has significantly enhanced student learning by provid-
ing personalized and immediate assistance. However, through the
evaluation of the CS50 Duck’s responses, we identified key areas
needing improvement, including instruction dilution, ineffective
teaching styles, and a lack of a systematic way to evaluate our AI
system. Following the implementation of newer versions with this
feedback in mind through few-shot prompting and fine-tuning,
we have quantitatively demonstrated evidence of improvement in
model behavior and qualitatively shown alignment with our teach-
ing team’s pedagogical values of TF-like support that prioritizes
long-term learning.

Our evaluation framework has demonstrated its effectiveness in
improving the relevance and quality of AI responses. Model-graded
evaluations allow for scalable assessment of large datasets, while
human-in-the-loop evaluations confirm the alignment of AI outputs
with pedagogical objectives and allow for evaluating multi-turn
conversations. These advancements highlight the potential of AI
tools to offer scalable and personalized learning support.

The success of these tools underscore their potential for broader
application in education. As we continue to refine these technolo-
gies, our goal remains to enhance student learning experiences and
ensure that AI tools effectively support educational goals.

Acknowledgments
Many thanks to Ed, GitHub,Microsoft, andOpenAI for their support
of this work. And many thanks as well to Brenda Anderson, Sophie
Anderson, Doug Lloyd, and CS50’s whole team for their assistance
with this work.

Improving AI in CS50 SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

References
[1] Meriem Boubdir, Edward Kim, Beyza Ermis, Sara Hooker, and Marzieh Fadaee.

2023. Elo Uncovered: Robustness and Best Practices in Language Model Evalua-
tion. arXiv:2311.17295 [cs.CL] https://arxiv.org/abs/2311.17295

[2] Jérôme Seymour Bruner. 1961. The act of discovery. Harvard Educational Review
31 (1961), 21–32. https://api.semanticscholar.org/CorpusID:142938071

[3] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos,
Tianle Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E.
Gonzalez, and Ion Stoica. 2024. Chatbot Arena: An Open Platform for Evaluating
LLMs by Human Preference. arXiv:2403.04132 [cs.AI] https://arxiv.org/abs/2403.
04132

[4] Chroma. 2024. Chroma DB. https://docs.trychroma.com/ Accessed: 2024-07-21.
[5] Haodong Duan, JueqiWei, ChonghuaWang, Hongwei Liu, Yixiao Fang, Songyang

Zhang, Dahua Lin, and Kai Chen. 2023. BotChat: Evaluating LLMs’ Capabilities
of Having Multi-Turn Dialogues. arXiv:2310.13650 [cs.CL] https://arxiv.org/abs/
2310.13650

[6] Ed. 2024. https://edstem.org/ Accessed: 2024-07-21.
[7] A.E. Elo. 1966. The USCF Rating System: Its Development, Theory, and Applica-

tions. United States Chess Federation. https://books.google.com/books?id=
onUazQEACAAJ

[8] Harry Barton Essel, Dimitrios Vlachopoulos, Albert Benjamin Essuman, and
John Opuni Amankwa. 2024. ChatGPT effects on cognitive skills of undergrad-
uate students: Receiving instant responses from AI-based conversational large
language models (LLMs). Computers and Education: Artificial Intelligence 6 (2024),
100198. https://doi.org/10.1016/j.caeai.2023.100198

[9] Denny et al. 2024. Desirable Characteristics for AI Teaching Assistants in Pro-
gramming Education. In Proceedings of the 2024 on Innovation and Technology
in Computer Science Education V. 1 (ITiCSE 2024). ACM. https://doi.org/10.1145/
3649217.3653574

[10] Finnie-Ansley et al. 2022. The Robots Are Coming: Exploring the Implica-
tions of OpenAI Codex on Introductory Programming. In Proceedings of the
24th Australasian Computing Education Conference (Virtual Event, Australia)
(ACE ’22). Association for Computing Machinery, New York, NY, USA, 10–19.
https://doi.org/10.1145/3511861.3511863

[11] Garcia et al. 2023. The Unreasonable Effectiveness of Few-shot Learning for
Machine Translation. In Proceedings of the 40th International Conference on Ma-
chine Learning (Proceedings of Machine Learning Research, Vol. 202), Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (Eds.). PMLR, 10867–10878. https://proceedings.mlr.press/
v202/garcia23a.html

[12] Ji et al. 2023. Survey of Hallucination in Natural Language Generation. Comput.
Surveys 55, 12 (March 2023), 1–38. https://doi.org/10.1145/3571730

[13] Jared Kaplan et al. 2020. Scaling Laws for Neural Language Models.
arXiv:2001.08361 [cs.LG] https://arxiv.org/abs/2001.08361

[14] Khor et al. 2024. A Systematic Review of the Role of Learning Analytics in
Supporting Personalized Learning. Education Sciences 14, 1 (2024). https://doi.
org/10.3390/educsci14010051

[15] Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks. In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Asso-
ciates, Inc., 9459–9474. https://proceedings.neurips.cc/paper_files/paper/2020/
file/6b493230205f780e1bc26945df7481e5-Paper.pdf

[16] OpenAI et al. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https:
//arxiv.org/abs/2303.08774

[17] Tom B. Brown et al. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL] https://arxiv.org/abs/2005.14165

[18] Xingjiao Wu et al. 2022. A survey of human-in-the-loop for machine learning.
Future Generation Computer Systems 135 (2022), 364–381. https://doi.org/10.
1016/j.future.2022.05.014

[19] Wensheng Gan, Zhenlian Qi, Jiayang Wu, and Jerry Chun-Wei Lin.
2023. Large Language Models in Education: Vision and Opportunities.

arXiv:2311.13160 [cs.AI] https://arxiv.org/abs/2311.13160
[20] Jennifer M Gore. 2021. The quest for better teaching. Oxford Review of Education

47, 1 (2021), 45–60.
[21] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del

Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien
Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and Yuanzhi Li. 2023.
Textbooks Are All You Need. arXiv:2306.11644 [cs.CL] https://arxiv.org/abs/
2306.11644

[22] A.M. Hasanein and A.E.E. Sobaih. 2023. Drivers and Consequences of ChatGPT
Use in Higher Education: Key Stakeholder Perspectives. European Journal of
Investigation in Health, Psychology and Education 13, 11 (Nov 2023), 2599–2614.
https://doi.org/10.3390/ejihpe13110181

[23] Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Zachary Henley,
Paul Denny, Michelle Craig, and Tovi Grossman. 2024. CodeAid: Evaluating a
Classroom Deployment of an LLM-based Programming Assistant that Balances
Student and Educator Needs. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (CHI ’24). ACM, 1–20. https://doi.org/10.1145/
3613904.3642773

[24] Simon Lermen and Ondřej Kvapil. 2023. Exploring the Robustness of Model-
Graded Evaluations and Automated Interpretability. arXiv:2312.03721 [cs.CL]
https://arxiv.org/abs/2312.03721

[25] Jiaqi Li, Yixuan Tang, and Yi Yang. 2024. Know the Unknown: An Uncertainty-
Sensitive Method for LLM Instruction Tuning. arXiv:2406.10099 [cs.CL] https:
//arxiv.org/abs/2406.10099

[26] Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton,
and David J. Malan. 2024. Teaching CS50 with AI: Leveraging Generative Ar-
tificial Intelligence in Computer Science Education. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1 (Portland, OR,
USA) (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA,
750–756. https://doi.org/10.1145/3626252.3630938

[27] Microsoft. 2023. Azure OpenAI. https://azure.microsoft.com/en-us/products/ai-
services/openai-service/ Accessed: 2024-07-21.

[28] Microsoft. 2024. Introduction to prompt engineering. https://learn.microsoft.
com/en-us/azure/ai-services/openai/concepts/prompt-engineering Accessed:
2024-07-21.

[29] OpenAI. 2024. ChatGPT. https://chatgpt.com Accessed: 2024-11-17.
[30] OpenAI. 2024. Embeddings. https://platform.openai.com/docs/guides/

embeddings Accessed: 2024-07-21.
[31] OpenAI. 2024. Getting Started with OpenAI Evals. https://cookbook.openai.com/

examples/evaluation/getting_started_with_openai_evals Access: 2024-07-22.
[32] OpenAI. 2024. GPT-4o. https://openai.com/index/hello-gpt-4o Access: 2024-07-

21.
[33] OpenAI. 2024. GPT-4o Mini. https://openai.com/index/gpt-4o-mini-advancing-

cost-efficient-intelligence Access: 2024-07-21.
[34] OpenAI. 2024. OpenAI Evals. https://github.com/openai/evals Access: 2024-07-

21.
[35] E. Soloway. 1986. Learning to program=learning to construct mechanisms and

explanations. Commun. ACM 29, 9 (sep 1986), 850–858. https://doi.org/10.1145/
6592.6594

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs.CL] https://arxiv.org/abs/1706.03762

[37] Hiroko Kawaguchi Warshauer. 2011. The Role of Productive Struggle in Teaching
and Learning Middle School Mathematics.

[38] Boštjan Šumak, Diego López-De-Ipiña, Olga Dziabenko, Sěrgio Duarte Correia,
Luı̌sa M. Serrano De Carvalho, Secundino Lopes, Irfan Şimşek, Tuncer Can,
Darja Ivanuša Kline, and Maja Pušnik. 2024. AI-Based Education Tools for En-
abling Inclusive Education: Challenges and Benefits. In 2024 47th ICT and Electron-
ics Convention, MIPRO 2024 - Proceedings. Institute of Electrical and Electronics
Engineers Inc., 472–477. https://doi.org/10.1109/MIPRO60963.2024.10569714

https://arxiv.org/abs/2311.17295
https://arxiv.org/abs/2311.17295
https://api.semanticscholar.org/CorpusID:142938071
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://docs.trychroma.com/
https://arxiv.org/abs/2310.13650
https://arxiv.org/abs/2310.13650
https://arxiv.org/abs/2310.13650
https://edstem.org/
https://books.google.com/books?id=onUazQEACAAJ
https://books.google.com/books?id=onUazQEACAAJ
https://doi.org/10.1016/j.caeai.2023.100198
https://doi.org/10.1145/3649217.3653574
https://doi.org/10.1145/3649217.3653574
https://doi.org/10.1145/3511861.3511863
https://proceedings.mlr.press/v202/garcia23a.html
https://proceedings.mlr.press/v202/garcia23a.html
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.3390/educsci14010051
https://doi.org/10.3390/educsci14010051
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.1016/j.future.2022.05.014
https://arxiv.org/abs/2311.13160
https://arxiv.org/abs/2311.13160
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://doi.org/10.3390/ejihpe13110181
https://doi.org/10.1145/3613904.3642773
https://doi.org/10.1145/3613904.3642773
https://arxiv.org/abs/2312.03721
https://arxiv.org/abs/2312.03721
https://arxiv.org/abs/2406.10099
https://arxiv.org/abs/2406.10099
https://arxiv.org/abs/2406.10099
https://doi.org/10.1145/3626252.3630938
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/prompt-engineering
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/prompt-engineering
https://chatgpt.com
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://cookbook.openai.com/examples/evaluation/getting_started_with_openai_evals
https://cookbook.openai.com/examples/evaluation/getting_started_with_openai_evals
https://openai.com/index/hello-gpt-4o
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://github.com/openai/evals
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/MIPRO60963.2024.10569714

	Abstract
	1 Introduction
	2 Motivation
	2.1 Our Pedagogical Goals

	3 Solutions
	3.1 AI System Evaluation Platform
	3.2 Emulating Human Teacher Responses

	4 Implementation Details
	4.1 Fine-Tuning Dataset
	4.2 Human and Model-Graded Evaluation

	5 Results
	5.1 Diagnosing Problems with Evaluation
	5.2 Confirming Improvement with Evaluation
	5.3 Discussion

	6 Future Work
	7 Conclusion
	References

