
22

Implementing Public-Key Infrastructure
for Sensor Networks

DAVID J. MALAN, MATT WELSH, and MICHAEL D. SMITH

Harvard University

We present a critical evaluation of the first known implementation of elliptic curve cryptography

over F2p for sensor networks based on the 8-bit, 7.3828-MHz MICA2 mote. We offer, along the

way, a primer for those interested in the field of cryptography for sensor networks. We discuss, in

particular, the decisions underlying our design and alternatives thereto. And we elaborate on the

methodologies underlying our evaluation.

Through instrumentation of UC Berkeley’s TinySec module, we argue that, although symmetric

cryptography has been tractable in this domain for some time, there has remained a need, unful-

filled until recently, for an efficient, secure mechanism for distribution of secret keys among nodes.

Although public-key infrastructure has been thought impractical, we show, through analysis of

our original implementation for TinyOS of point multiplication on elliptic curves, that public-key

infrastructure is indeed viable for TinySec keys’ distribution, even on the MICA2. We demonstrate

that public keys can be generated within 34 seconds and that shared secrets can be distributed

among nodes in a sensor network within the same time, using just over 1 kilobyte of SRAM and

34 kilobytes of ROM. We demonstrate that communication costs are minimal, with only 2 packets

required for transmission of a public key among nodes. We make available all of our source code

for other researchers to download and use. And we discuss recent results based on our work that

corroborate and improve upon our conclusions.
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1. INTRODUCTION

Wireless sensor networks have been proposed for such applications as habi-
tat monitoring [Cerpa et al. 2001], structural health monitoring [Kottapalli
et al. 2003], emergency medical care [Malan et al. 2004a], and vehicular track-
ing [NEST Challenge Architecture 2002], all of which demand some combina-
tion of authentication, integrity, privacy, and security, implementation of which
tends to require cryptographic primitives. Unfortunately, until recently, the
state of the art in cryptography for sensor networks offered weak, if any, guar-
antees of these needs.

The limited resources boasted by today’s sensor networks appear to render
them ill-suited for the most straightforward implementations of security proto-
cols. Consider the MICA2 mote [Crossbow Technology, Inc. 2004], designed by
researchers at the University of California at Berkeley and fabricated by Cross-
bow Technology, Inc. Supported by Berkeley’s TinyOS operating system [Hill
et al. 2000] and the nesC programming language [Gay et al. 2003], this device
offers an 8-bit, 7.3828-MHz ATmega 128L processor, 4 kilobytes (KB) of primary
memory (SRAM), and 128 KB of program space (ROM). Such a device, given
these resources, is seemingly unfit for computationally expensive or energy-
intensive operations. For this reason public-key cryptography has often been
ruled out for sensor networks as an infrastructure for authentication, integrity,
privacy, and security [Karlof et al. 2004a, 2004b; Perrig et al. 2001, 2004], even
despite its allowance for secure rekeying of mobile devices.

But such conclusions have been backed by actual data too infrequently. In
fact, prior to our original work [Malan 2004b], little empirical research had been
published to our knowledge, on the viability of public-key infrastructure (PKI)
for the MICA2, save for a cursory analysis of an implementation of RSA [Watro
2003].

Our work has aspired to fill this void. This article in particular expands on
our own prior work [Malan et al. 2004b], providing not only a primer for those
interested in cryptography for sensor networks but also additional details on
our own experience. Moreover, rather than present results in isolation, we ex-
pose in greater detail our motivation for various design decisions and elaborate
on the methodologies underlying our evaluation.

Through instrumentation of TinyOS, we first demonstrate that symmetric
cryptography is tractable on the MICA2. By way of our own implementation
of multiplication of points on elliptic curves, we then argue that PKI for se-
cret keys’ distribution is, in fact, tractable as well. We do not dwell in this
work on tradeoffs one might need to make in order to integrate PKI with par-
ticular applications but, rather, on whether PKI is viable at all. With elliptic
curves over F2p , generation of public keys requires no more than 34 seconds, and
distribution of shared secrets requires no more than that, using just over 1 KB
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of SRAM and 34 KB of ROM [Malan 2004b; Malan et al. 2004b]. With elliptic
curves over Fp (and AVR assembly), the same operations can be implemented in
far less time [Gura et al. 2004]. Communication costs, meanwhile, are minimal,
with only 2 packets required for transmission of a public key among nodes.

To be sure, not all sensor networks (nor their applications) require PKI, let
alone any form of security. But with PKI comes capabilities that can certainly
prove useful, among them the abilities to distribute symmetric keys securely
and to sign messages digitally. Per Section 6, our original work on PKI for sensor
networks [Malan 2004b] is now part of a growing body of literature.

We begin this article own look at PKI for sensor networks in Section 2 with an
analysis of TinySec [Karlof et al. 2004b], TinyOS’s existing symmetric infras-
tructure for the MICA2 based on SKIPJACK [National Institute of Standards
and Technology 1988]. In Section 3, we address shortcomings in that infras-
tructure with a look at an implementation of Diffie-Hellman for the MICA2
based on the Discrete Logarithm Problem (DLP) and expose weaknesses in its
design for sensor networks. In Section 4, we redress those weaknesses with
our own implementation of Diffie-Hellman based on the Elliptic Curve Dis-
crete Logarithm Problem (ECDLP), the first such implementation to our knowl-
edge [Malan 2004b; Malan et al. 2004b]. In Section 5, we discuss optimizations
underlying our implementation. In Section 6, we discuss recent work by others
that corroborates and improves upon our own findings. In Section 7, we propose
directions for future work. In Section 8, we conclude.

Along the way, we offer a primer for those interested in this field of cryptog-
raphy for sensor networks. In particular, we discuss the decisions underlying
our design and possible alternatives. We also elaborate on the methodologies
underlying our evaluations of SKIPJACK and Diffie-Hellman for sensor net-
works. Toward this article’s end, we also provide a hyperlink to all of our source
code for other researchers to download and use.

2. SKIPJACK AND THE MICA2

TinyOS offers the MICA2 access control, authentication, integrity, and confi-
dentiality through TinySec, a link-layer security mechanism based on SKIP-
JACK in cipher-block chaining mode. An 80-bit symmetric cipher, SKIPJACK
is the formerly classified algorithm behind the Clipper chip, approved by the
National Institute for Standards and Technology (NIST) in 1994 for the Es-
crowed Encryption Standard [National Institute of Standards and Technology
1994]. TinySec supports message authentication and integrity with message
authentication codes, confidentiality with encryption, and access control with
shared, group keys. In this section we evaluate the performance of this mecha-
nism, as the PKI we propose in later sections for symmetric keys’ distribution
will assume that we have access to efficient symmetric-key primitives.

The mechanism allows for an 80-bit key space, the benefit of which is
that known attacks require as many 279 operations on average (assuming
SKIPJACK isn’t reduced from 32 rounds [Biham et al. 1999]).1 Moreover, as

1Although TinySec allows for 80-bit keys, its original implementation actually relied on 64-bit keys

that were extended with 16 bits of padding.
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Fig. 1. (a) TinyOS packet format without TinySec; (b) TinyOS packet format with TinySec.

packets under TinySec include a 4-byte message authentication code (MAC),
the probability of blind forgery is only 2−32. This security comes at a cost of just
five bytes (B); whereas transmission of some 29-byte plaintext and its cyclic
redundancy check (CRC) requires a packet of 36 B. Transmission of that plain-
text’s ciphertext and MAC under TinySec requires a packet of only 41 B, as
the mechanism borrows TinyOS’s fields for Group ID (TinyOS’s weak, default
mechanism for access control) and CRC for its MAC (Figure 1).

2.1 Performance

The impact of TinySec on the MICA2’s performance is reasonable. To assess
TinySec’s impact on packets’ transmission time and round-trip time, we imple-
mented BenchmarksM. A MICA2 running this TinyOS module forever trans-
mits pings with 29-byte, random payloads to another mote running the same,
which echoes the same in return. Each mote measures not only the time elapsed
between SendMsg.send(·,·,·) and SendMsg.sendDone(), but also that between
SendMsg.send(·,·,·) and ReceiveMsg.receive(·). All such measurements are
logged to TOS UART ADDR for analysis by our implementation in Java of a
MessageListener with which we determined the median, mean, standard devi-
ation, and standard error for the MICA2’s transmission and round-trip times,
without and with TinySec, over 1,000 such measurements. A link to these tools’
source code is offered toward this article’s end.

On first glance, it would appear that TinySec adds under 2 milliseconds (ms)
to a packet’s transmission time (Table I) and under 5 ms to a packet’s round-trip
time to and from some neighbor (Table II). However, the apparent overhead of
TinySec, 1,244 microseconds (μsec) on average, as suggested by transmission
times, is nearly subsumed by the data’s root mean square (1,094 μsec). Round-
trip times exhibit less variance, but more precise analysis of TinySec requires
tighter benchmarks.

We thus instrumented TinyOS’s TinySecM in order to measure the time re-
quired to invoke encrypt() and computeMAC() on 29-byte, random payloads,
averaged over 1,000 trials. A link to our instrumentation’s source code ap-
pears at this articles’s end. Table III offers our results, which exhibit far less
variance—encryption of a 29-byte, random payload requires 2,190 μsec on av-
erage, and computation of that payload’s MAC requires 3,049 μsec on average.
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Table I. Transmission Times Required to Transmit a

29-Byte, Random Payload, Averaged Over 1000 Trials,

Without and With TinySec Enabled. Transmission Time is

Defined Here as the Time Elapsed Between

SendMsg.send(·,·,·) and SendMsg.sendDone(). The

Implied Overhead of TinySec on Transmission Time is

Given as the Difference of the Data’s Means. The Root

Mean Square is Defined as
√

s2
w/o

/1,000 + s2
w/

/1,000, Where

sw/o and sw/ are the Data’s Standard Deviations

without TinySec with TinySec

Median 72,904 μsec 74,367 μsec

Mean 74,844 μsec 76,088 μsec

Standard Deviation 24,248 μsec 24,645 μsec

Standard Error 767 μsec 779 μsec

Implied Overhead of TinySec 1,244 μsec

Root Mean Square 1,094 μsec

Table II. Round-Trip Times Required to Transmit a

29-Byte, Random Payload, Without and With TinySec

Enabled, From One Node to a Neighbor and Back Again,

Averaged Over 1000 Trials. More Precisely, Round-Trip

Time is Defined Here as the Time Elapsed Between

SendMsg.send(·,·,·) and ReceiveMsg.receive(·). The

Implied Overhead of TinySec on Round-Trip Time is Given

as the Difference of the Data’s Means. The Root Mean

Square is Defined as
√

s2
w/o

/1,000 + s2
w/

/1,000, Where sw/o

and sw/ are the Data’s Standard Deviations

without TinySec with TinySec

Median 145,059 μsec 149,290 μsec

Mean 147,044 μsec 152,015 μsec

Standard Deviation 30,736 μsec 31,466 μsec

Standard Error 972 μsec 995 μsec

Implied Overhead of TinySec 4,971 μsec

Root Mean Square 1,391 μsec

Table III. Times Required to Encrypt a 29-Byte,

Random Payload, and to Compute that Payload’s

MAC, Averaged Over 1000 Trials. The Implied

Overhead of TinySec is Given as the Sum of the

Data’s Means. The Root Mean Square is Defined as√
s2
w/o

/1,000 + s2
w/

/1,000, Where sw/o and sw/ are the

Data’s Standard Deviations

encrypt() computeMAC()

Median 2,189 μsec 3,038 μsec

Mean 2,190 μsec 3,049 μsec

Standard Deviation 3 μsec 281 μsec

Standard Error 0 μsec 9 μsec

Implied Overhead of TinySec 5,239 μsec

Root Mean Square 9 μsec
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Fig. 2. Actual throughput versus desired throughput for acknowledged (ACKed) and unacknowl-

edged (unACKed) transmissions between a sender and a receiver, averaged over ten minutes of

transmission per level of desired throughput, where desired throughput is the rate at which calls

to SendMsg.send(·,·,·) were scheduled by Timer.start(·,·). ACKed actual throughput is the rate

at which 29-byte, random payloads from a sender were received and subsequently acknowledged

by an otherwise passive recipient. UnACKed actual throughput is the rate at which the sender

actually sent such packets, acknowledged or not (i.e., the rate at which calls to SendMsg.send(·,·,·)
were actually processed). For clarity, where ACKed and unACKed throughput begin to diverge

points are labelled with values for actual throughput. In environments with less contention for

medium access than in ours, higher throughput is possible, without and with TinySec enabled.

Overall, TinySec adds 5,239 ± 18 μsec to a packet’s computational require-
ments. It appears, then, that some of those cycles can be subsumed by delays
in scheduling and medium access, at least for applications not operating at full
duty. Figure 2, the results of an analysis of the MICA2’s throughput, without
and with TinySec enabled, puts the mechanism’s computational overhead for
such applications into perspective: on average, TinySec may lower throughput
of acknowledged packets by only 0.28 packets per second. These results are in
line with UC Berkeley’s own evaluation of TinySec.2

2.2 Memory

Of course, TinySec’s encryption and authentication does come at an addi-
tional cost in memory. To measure this cost, we utilized John Regehr’s stack-
tool [Regehr 2004] to determine a TinyOS module’s memory usage without and
with TinySec enabled. Per Table IV, TinySec adds 454 B to an application’s .bss
segment, 276 B to an application’s .data segment, 7,076 B to an application’s

2Per personal correspondence with Naveen Sastry, University of California at Berkeley.
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Table IV. Memory Overhead of TinySec, Determined

Through Instrumentation of CntToRfm, an Application

that Simply Broadcasts a Counter’s Values Over the

MICA2’s Radio. The .bss and .data Segments Consume

SRAM While the .text Segment Consumes ROM. Stack is

Defined Here as the Maximum of the Application’s Stack

Size During Execution

without TinySec with TinySec Difference

.bss 384 B 838 454 B

.data 4 B 280 B 276 B

.text 9,220 B 16,296 B 7,076 B

stack 105 B 197 B 92 B

.text segment, and 92 B to an application’s maximal stack size during execu-
tion. For applications that don’t require the entirety of the MICA2’s 128 KB of
program memory and 4 KB of primary memory, TinySec is a viable addition.

2.3 Security

As with any cipher based only on shared secrets, TinySec is, of course, vulnera-
ble to various attacks. After all, the MICA2 is intended for deployment in sensor
networks. For reasons of cost and logistics, long term physical security of the
devices is unlikely. Compromise of the network therefore, reduces to compro-
mise of any one node, unless for instance, rekeying is possible. Pairwise keys
among n nodes would certainly provide some defense against compromises of
individual nodes. But n2 80-bit keys would more than exhaust a node’s SRAM
for n as small as 20. A more sparing use of secret keys is in order, but se-
cure, dynamic establishment of those keys, particularly for networks in which
the positions of sensors may be transient, requires a chain or infrastructure
of trust. In fact, the very design of TinySec requires as much for rekeying as
well. Though TinySec’s 4-byte initialization vector (IV) allows for secure trans-
mission of messages as many as 232 times, that bound may be insufficient for
embedded networks whose lifespans demand longer lasting security.3 Needless
to say, TinySec’s reliance on a single secret key prohibits the mechanism from
securely rekeying itself.

Fortunately, these problems of secret keys’ distribution are redressed by
public-key infrastructure. The sections that follow explore options for that in-
frastructure’s design and implementation on the MICA2.

3. DLP AND THE MICA2

With the utility of SKIPJACK-based TinySec thus motivated, and the mech-
anism’s costs exposed, we next examine DLP, on which Diffie-Hellman [Diffie
and Hellman 1976] is based, as an answer to the MICA2’s problems of se-
cret keys’ distribution. DLP typically involves recovery of x ∈ Zp, given p, g ,
and g x (mod p), where p is a prime integer, and g is a generator of Zp. By
leveraging the presumed difficultly of DLP, Diffie-Hellman allows two parties

3To allow for secure transmission of as many as 232 packets, it is actually necessary to modify

TinySec so that it no longer writes a mote’s address into the third and fourth bytes of a mote’s IV.
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Fig. 3. Typical exchange of a shared secret under Diffie-Hellman based on DLP [Perlman 2003].

to agree, without prior arrangement, upon a shared secret, even in the midst
of eavesdroppers, with perfect forward secrecy, as depicted in Figure 3. Au-
thenticated exchanges are possible with STS [Diffie et al. 1992], a variant of
Diffie-Hellman.

With a form of Diffie-Hellman, then, two nodes could thus establish a shared
secret for use as TinySec’s key. At issue, though, is the cost of such establish-
ment on the MICA2. Inasmuch as the goal at hand is distribution of 80-bit
TinySec keys, any mechanism of exchange should provide at least as much
security. According to NIST [National Institute of Standards and Technology
2003], the MICA2’s implementation of Diffie-Hellman should employ a modu-
lus, p, of at least 1,024 bits and an exponent (private key), x, of at least 160 bits
(Table V).

Unfortunately, on an 8-bit architecture, computations with 160-bit and 1,024-
bit values are not inexpensive. However, modular exponentiation is not in-
tractable on the MICA2. Figure 4 offers the results of our instrumentation of
one implementation of Diffie-Hellman for the MICA2 by BBN Technologies.
Computation of 2x (mod p), where x is a pseudorandomly generated 160-bit
integer and p is a 768-bit prime requires 31.0 sec on average; computation of
the same, where p is a 1,024-bit prime, requires 54.9 sec. Assuming generously,
that nodes sharing some key need only be rekeyed every 232 packets (at which
time four-byte IVs are exhausted), this computation and that for yx (mod p),
where y is another node’s public key, seem reasonable costs for an application’s
longevity. Table VI details these operations’ memory usage, which we measured
with stacktool [Regehr 2004].

Of course, these measurements assume operation at full duty cycle, the en-
ergy requirements of which may be unacceptable, as the MICA2’s lifetime de-
creases to just a few days at maximal duty cycle. To measure the cost in energy of
modular exponentiation on the MICA2, we further instrumented the same im-
plementation of Diffie-Hellman to raise and lower a general-purpose I/O pin at
the start and end, respectively, of the primitive’s execution. We then measured
both time and average power consumption using an oscilloscope, in order to
calculate, using the frequency of the MICA2’s clock, the primitive’s total energy
consumption [Shnayder et al. 2004].

Table VII reveals the MICA2’s energy consumption for modular ex-
ponentiation: computation of 2x (mod p) appears to require 1.185 (J).

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 22, Publication date: August 2008.
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Table V. Strength in Bits (b) of Diffie-Hellman

Based on DLP for Moduli and Exponents of

Various Sizes. “An Algorithm that has a ‘Y ’ Bit

Key, but Whose Strength is Equivalent to an ‘X ’

Bit Key of Such a Symmetric Algorithm is Said to

Provide ‘X Bits of Security’ or to Provide ‘X -bits

of Strength.’ An Algorithm that Provides X Bits

of Strength Would, on Average, Take 2X −1T to

Attack, Where T is the Amount of Time that is

Required to Perform One Encryption of a

Plaintext Value and Comparison of the Result

Against the Corresponding Ciphertext

Value.” [National Institute of Standards and

Technology 2003]

Bits of Security Modulus Exponent

80 b 1,024 b 160 b

112 b 2,048 b 224 b

128 b 3,072 b 256 b

192 b 7,680 b 384 b

256 b 15,360 b 512 b

Modular Exponentiation
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Fig. 4. Time required to compute 2x (mod p), where p is prime, on the MICA2.

Roughly speaking, a mote could devote its lifetime to 51,945 such
computations.4

Of course, the implementation could be tuned for better performance. How-
ever, its computations ultimately require not only time but also memory. Mere

4For instance, Energizer No. E91, an AA battery, offers an average capacity of 2,850 mAh [Ev-

eryready Battery Company 2004]; it follows that no more than 2 × 2,850 mAh × 3600 sec/h ÷
(7.3 mA × 54.1144 sec) ≈ 51,945 modular exponentiations would be possible with two AA batteries

on the MICA2. Of course, this bound is generous, as the MICA2 effectively dies once voltage drops

below 2 volts.
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Table VI. Memory Overhead of Modular

Exponentiation, Determined Through Our

Instrumentation of an Implementation of

Diffie-Hellman Based on DLP on the MICA2 that

Computes 2x (mod p), Where x is a 512-bit

Integer and p is Prime. The .bss and .data

Segments Consume SRAM While the .text

Segment Consumes ROM. Stack is Defined Here

as the Maximum of the Application’s Stack Size

During Execution

768-Bit Modulus 1,024-Bit Modulus

.bss 852 B 980 B

.data 102 B 134 B

.text 11,334 B 11,350 B

stack 136 B 136 B

Table VII. Energy Consumption of Modular Exponentiation,

Determined Through Our Instrumentation of an Implementation

of Diffie-Hellman Based on DLP on the MICA2 that Computes 2x

(mod p), Where x is a 160-Bit Integer and p is a 1,024-Bit Prime

1,024-Bit Modulus, 160-Bit Exponent

Total Time 54.1144 sec

Total CPU Utilization 3.9897 × 108 cycles

Total Energy 1.185 Joules

storage of a public key requires as many bits as the modulus in use. Accord-
ingly, n 1,024-bit keys would more than exhaust a node’s SRAM for n as small
as 32. Although a node is unlikely to have—or, at least, need—so many neigh-
bors or certificate authorities for whom it needs public keys, Diffie-Hellman’s
relatively large key sizes are unfortunate in the MICA2’s resource-constrained
environment. A key of this size would not even fit in a pair of TinyOS packets.

4. ECDLP AND THE MICA2

With ECC, secure distribution of 80-bit TinySec keys is possible using public
keys with fewer bits than 1,024; 163 bits are sufficient (Figure 5). Indeed, el-
liptic curves are believed to offer security computationally equivalent to that
of Diffie-Hellman, based on DLP with remarkably smaller key sizes insofar as
subexponential algorithms exist for DLP [Adleman 1979; Gordon 1993; LaMac-
chia and Odlyzko 1991; Rabin 1979], but no such algorithm is known or thought
to exist for ECDLP over certain fields [Certicom Corporation 2000; Gaudry et al.
2000].

Elliptic curves offer an alternative foundation for the exchange of shared se-
crets among eavesdroppers with perfect forward secrecy, as depicted in Figure 6.
ECDLP, on which ECC [Koblitz 1987; Miller 1986a] is based, typically involves
recovery over some Galois (i.e., finite) field, F, of k ∈ F, given (at least) k · G, G,
and E, where G is a point on an elliptic curve, E, a smooth curve of the long
Weierstrass form

y2 + a1x y + a3 y ≡ x3 + a2x2 + a4x + a6, (1)

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 22, Publication date: August 2008.
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Fig. 5. Sizes in bits (b) of private keys necessary to exchange SKIPJACK keys securely using ECC

over two different fields [National Institute of Standards and Technology 1999]. With ECC over

F2p , 163-bit keys are sufficient for the secure exchange of 80-bit SKIPJACK keys.

Fig. 6. Typical exchange of a shared secret under Diffie-Hellman based on ECDLP.

where ai ∈ F. Of recent interest to cryptographers are such curves over Fp and
F2p (Figure 7), where p is prime, as neither appears vulnerable to subexpo-
nential attack [Gaudry et al. 2000]. Though once popular, extension fields of
composite degree over F2 are vulnerable by reduction with Weil descent [Frey
and Gangl 1998] of ECDLP to DLP over hyperelliptic curves [Gaudry et al.
2000]. But F2p , a binary extension field, remains popular among implementa-
tions of ECC, especially those in hardware, as it allows for particularly space-
and time-efficient algorithms. In light of its applications in coding, the field has
also received more attention in the literature than those of other characteristics
[Paar 1999].

It was with this history in mind that we proceeded with our implementation
of ECC over F2p toward the goal of smaller public keys for the MICA2.

4.1 Elliptic Curves over F2p

It turns out that, over F2p , Equation 1 simplifies to

y2 + x y ≡ x3 + ax2 + b, (2)

where a, b ∈ F2p , upon substitution of a2
1 x + a3

a1
for x and a3

1 y + a2
1a4+a2

3

a3
1

for y ,

if we consider only nonsupersingular curves, for which a1 �= 0. It is the set of
solutions to Equation 2 and, more generally, Equation 1 (the points on E), that
actually provides the foundation for smaller public keys on the MICA2. All that
remains is specification of some algebraic structure over that set. An Abelian

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 22, Publication date: August 2008.



22:12 • D. J. Malan et al.

Fig. 7. Finite fields proposed for use in public-key schemes [Paar 1999]. Of recent interest to

cryptographers are Fp and F2p , where p is prime, as neither appears vulnerable to subexponential

attack [Gaudry et al. 2000].

group suffices but requires provision of some binary operator offering closure,
associativity, identity, inversion, and commutativity. As suggested by ECDLP’s
definition, that operator is to be addition.

The addition of two points on a curve over F2p is defined as

(x1, y1) + (x2, y2) = (x3, y3),

such that

(x3, y3) = (λ2 + λ + x1 + x2 + a, λ(x1 + x3) + x3 + y1),

where

λ = ( y1 + y2)(x1 + x2)−1.

However, so that the group is Abelian, it is necessary to define a point at infinity,
O, whereby

O + O = O,

(x, y) + O = (x, y), and

(x, y) + (x, − y) = O.

Doubling of some point, meanwhile, is defined as

(x1, y1) + (x1, y1) = (x3, y3),

such that

(x3, y3) = (
λ2 + λ + a, x2

1 + (λ + 1)x3

)
,

where

λ = x1 + y1x−1
1 ,

provided x1 �= 0.
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With these primitives point multiplication is also possible [Gordon 1998].
With an algebraic structure on the points of elliptic curves over F2p thus defined,
implementation of a cryptosystem is possible.

4.2 ECC over F2p

Implementation of ECC over F2p first requires choice of a basis for points’ rep-
resentation, insofar as each a ∈ F2p can be written as

a =
m−1∑
i=0

aiαi,

where ai ∈ {0, 1}. Thus defined, a can be represented as a binary vector,
{a0, a1, . . . , ap−1}, where {α0, α1, . . . , αp−1} is its basis over F2. Most common for
bases over F2 are polynomial bases and normal bases, though dual, triangular,
and other bases exist.

When represented with a polynomial basis, each a ∈ F2p corresponds to a
binary polynomial of degree less than p, whereby

a = ap−1x p−1 + ap−2x p−2 + · · · + a0x0,

where, again, ai ∈ {0, 1}. Accordingly, each a ∈ F2p can be represented in the
MICA2’s SRAM as a bit string, ap−1ap−2 · · · a0. All operations on these elements
are performed modulo an irreducible reduction polynomial, f , of degree p over
F2, such that f (x) = x p + ∑p−1

i=0 fixi, where fi ∈ {0, 1} for i ∈ {0, 1, . . . , p − 1}.
Typically, if an irreducible trinomial, x p + xk + 1, exists over F2p , then f (x)
is chosen to be that with smallest k; if no such trinomial exists, then f (x) is
chosen to be a pentanomial, x p + xk3 + xk2 + xk1 + 1, such that k1 is minimal,
k2 is minimal given k1, and k3 is minimal given k1 and k2 [López and Dahab
2000a].

In a polynomial basis, addition of two elements, a and b, is defined as a +
b = c, where ci ≡ ai + bi (mod 2) (a sequence of XORs). Multiplication of a
and b, meanwhile, is defined as a · b = c, where c(x) ≡ (

∑p−1
i=0 aixi)(

∑p−1
i=0 bixi)

(mod f (x)).
We selected a polynomial basis for our implementations of point multiplica-

tion on the MICA2, as it tends to allow for more efficient implementations in
software [Barwood 1997].

4.3 First Implementation

Our first implementation of ECC on the MICA2 (EccM 1.0), a TinyOS module
based on code by Michael Rosing [Rosing 1999] (whose Implementing Elliptic
Curve Cryptography is a popular starting point for any implementation of ECC)
ultimately reinforced prevailing wisdom: it was a failure.

EccM 1.0 first selected a random curve in the form of Equation 2, such that
a = 0 and b ∈ F2p . It next selected a random point, G ∈ F2p × F2p , from that
curve as well as a random k ∈ F2p , the node’s private key. Finally, it computed
k · G, the node’s public key.
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Fig. 8. Running time for EccM 1.0, a TinyOS module that selected for a node at random, using

a polynomial basis over F2p , a curve, a point, and a private key, thereafter computing the node’s

public key. Points are labelled with running times. For larger keys (e.g., 63-bit), the module failed

to produce results.

As in Rosing’s code, this implementation employed a number of optimiza-
tions. Addition of points was implemented in accordance with Schroeppel et al.
[1995]; multiplication of points followed Koblitz [1992]; conversion of integers
to nonadjacent form was accomplished as in Solinas [1997]. Generation of pseu-
dorandom numbers, meanwhile, was achieved with Marsaglia [1994].

On first glance, the results (Figure 8) were encouraging, with generation of
33-bit keys requiring just 1.776 sec. (The module itself performed these mea-
surements.) Unfortunately, for larger keys (e.g., 63-bit), the module failed to
produce results, instead causing the mote to reset as a result of stack over-
flow. Although none of the module’s functions were recursive, several utilized
a good deal of memory for multi-word arithmetic. Figure 9 offers the results of
an analysis of EccM 1.0’s usage of SRAM, determined with stacktool [Regehr
2004].

4.4 Second Implementation

Since optimizations of EccM 1.0 failed to render it possible to generate even
63-bit keys an overhaul of this popular implementation proved necessary for
realization of 163-bit keys. Inspired by the design of Dragongate Technolo-
gies Limited’s Java-based jBorZoi 0.9 [Dragongate Technologies Limited 2003],
EccM 2.0 similarly implements ECC but with far greater success. EccM 2.0
selects for a node, Alice, a private key, kA, using a polynomial basis over F2p ,
thereafter computing with a Koblitz curve and base point, G, Alice’s public key,
TA. Alice’s public key is then broadcast in two, 22-byte payloads to any node,
Bob, with whom secure communication is desired. Provided Alice receives Bob’s
public key, TB, from Bob in this same manner, each can compute a shared secret,
kA · kB · G, where kB is Bob’s private key. If so desired, this secret could be mas-
saged into compliance with a standard like the Elliptic Curve Key Agreement
Scheme, Diffie-Hellman 1 (ECKAS-DH1) [IEEE Computer Society 2000].
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Fig. 9. Primary memory used by EccM 1.0, a TinyOS module that, using a polynomial basis over

F2p , selected for a node at random a curve, a point, and a private key, thereafter computing the

node’s public key. Although the sizes of the .bss and .data segments are fixed during execution,

the stack is defined here as the maximum of the application’s stack size during execution. Keys of

63 bits or more exhaust the MICA2’s 4,096 KB of SRAM.

In EccM 2.0, multiplication of points is achieved with Algorithm IV.1 in Blake
et al. [1999], while addition of points is achieved with Algorithm 7 in López and
Dahab [2000a]. Multiplication of elements in F2p , meanwhile, is implemented
as Algorithm 4 in López and Dahab [2000b], while inversion is implemented as
Algorithm 8 in Hankerson et al. [2001].

Beyond rendering 163-bit public keys feasible, EccM 2.0 also redresses
another shortcoming in EccM 1.0. Inasmuch as EccM 1.0 selects curves at
random, it risks (albeit with exponentially small probability) selection of super-
singular curves that are vulnerable to subexponential attack via MOV reduc-
tion [Menezes et al. 1991] with index-calculus methods [Silverman and Suzuki
1998]. EccM 2.0 thus obeys NIST’s recommendation for ECC over F2p [National
Institute of Standards and Technology 1999], selecting, for the results

f (x) = x163 + x7 + x6 + x3 + 1

for the reduction polynomial,

y2 + x y ≡ x3 + x2 + 1

for the curve, E, the order of (i.e., number of points on) which is
0x4000000000000000000020108a2e0cc0d99f8a5ef, and, for the point G =
(Gx , G y ),

Gx = 0x2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8

and

G y = 0x289070fb05d38ff58321f2e800536d538ccdaa3d9.
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Table VIII. Memory Usage of EccM 1.0

Versus EccM 2.0. With EccM 2.0, We Obtain

Significantly More Bits of Security Using a

Reasonable Footprint in Memory. The .bss

and .data Segments Consume SRAM While

the .text Segment Consumes ROM. Stack is

Defined Here as the Maximum of the

Application’s Stack Size During Execution.

Much of the Increase of ROM’s Consumption

is the Result of EccM 2.0’s Additional

Functionality

EccM 1.0 EccM 2.0

(32-bit key) (163-bit key)

.bss 826 B 1,055 B

.data 6 B 4 B

.text 17,544 B 34,342 B

stack 976 B 81 B

Table IX. Energy Consumption of EccM 2.0, a TinyOS Module that Allows

Two Nodes to Generate Public and Private Keys (and, Thereafter, to Use the

Same to Exchange a Shared Secret), During Generation of a Node’s Public and

Private Keys

Private-Key Generation Public-Key Generation

Total Time 0.229 sec 34.161 sec

Total CPU Utilization 1.690 × 106 cycles 2.512 × 108 cycles

Total Energy 0.00549 Joules 0.816 Joules

Ultimately, EccM 2.0 employs much less memory than does EccM 1.0
(Table VIII), per stacktool [Regehr 2004], and its running time bests that for
Diffie-Hellman based on DLP, using keys an order of magnitude smaller in size
but no less secure. (The module itself measures the times required to generate
keys and to generate shared secrets.) The time required to generate a private
and public key pair with this module, averaged over 100 trials, is just 34.161 sec,
with a standard deviation of 0.921 sec. The time required to generate a shared
secret, given one’s private key and another’s public key, averaged over 100 tri-
als, is 34.173 sec, with a standard deviation of 0.934 sec. In short, distribution
of some shared secret using ECC over F2p requires no more than a minute
or so of computation per node in total. Table IX details the module’s energy
consumption, measured as before for Diffie-Hellman over DLP. Although such
performance might prove unacceptable for some applications of PKI, it appears
quite reasonable for infrequent distribution of TinySec keys. As more recent
work confirms (Section 6), it is also an upper bound on the time required.

Since the release of its source code, EccM 2.0 has been incorporated into, or
been a point of comparison for, a variety of projects [Arazi and Qi 2006; Blass
and Zitterbart 2005; Benenson et al. 2005; Deng et al. 2006; Rochester Institute
of Technology 2005; Seo et al. 2006; Wang and Li 2006]. A link to EccM 2.0’s
source code is offered toward the end of this article.
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5. DISCUSSION

EccM 2.0’s average running time of roughly 34 seconds for point multiplication
was the result of several iterations of optimization. In fact, this module initially
clocked 7.782 minutes for this computation, well beyond any reasonable bound.
To be sure, we spent some cycles foolishly (e.g., unnecessarily recomputing the
terminal condition for some loop). But other waste was less obvious. Apparent
only to us (and not to nesC’s compiler), certain loops were simply better off
iterating from high to low rather than from low to high, given the expected
lengths of various multiprecision intermediates. Other loops proved better off
once manually unrolled.

Rather than handle multiprecision bit shifts with a generalized implemen-
tation, we were able to shave seconds off the running time by special-casing the
most common of shifts (namely left shifts by one bit and by two bits), albeit at
a cost of a larger .bss segment.

Consider that for with inlining disabled, even the second version of this mod-
ule induced hundreds of thousands of function calls, largely the result of the
module’s requirement for multiprecision arithmetic. Even the slightest of im-
provements in some function’s performance, then, can effect significant overall
gains.

Other optimizations were grounded in published, theoretical results. Using
Algorithm 4 in López and Dahab [2000b] instead of Algorithm 2 in Hankerson
et al. [2001], offered several seconds of improvement, as did implementation
of Algorithm 7 in López and Dahab [2000a]. But the art of source-level, hand
optimizations, so infrequently deployed for modern systems, proved remarkably
helpful, daresay necessary, for an environment so constrained as the MICA2.

6. RELATED WORK

Studied by mathematicians for more than a century, elliptic curves have signif-
icant coverage in the literature and ECC has received much attention since its
discovery in 1985.

Since completion of our earliest work [Malan 2004b], the viability of PKI for
sensor networks has received significantly more attention. Gura et al. offer sig-
nificant improvement over our earlier results using Fp instead of F2p [Gura et al.
2004; Wander et al. 2005]. Ning and Liu [2005] now offer TinyECC 0.1 which
Wang compares to EccM 2.0 [Wang and Li 2006], while Gupta et al. [2005] offer
Sizzle (ECC-based SSL), both over Fp [Ning and Liu 2005]. Du et al. [2005] in-
vestigate alternatives to expensive public-key operations. Gaubatz et al. [2004]
propose a hardware-assisted approach to PKI. Benenson et al. [2005] mean-
while, implement digital signatures atop EccM 2.0 Watro et al. [2004] on the
other hand, explore RSA as a PKI foundation.

Though less recent, of particular relevance to our work, is Woodbury’s rec-
ommendation of an optimal extension field, F(28−17)17 , for low-end, 8-bit pro-
cessors [Woodbury 2001]. Ernst et al. [2002] propose supplementary hardware
for AVR implementing operations over binary fields. Handschuh and Paillier
[2000] propose cryptographic coprocessors for smart cards, whereas Woodbury
et al. [2000] describe ECC for smart cards without coprocessors. Albeit for a
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different target, Hasegawa et al. [1999] provide a “small and fast” implemen-
tation of ECC in software over Fp for a 16-bit microcomputer. Messerges et al.
[2003] call for ECC with 163-bit keys for mobile, ad hoc networks. Guajardo
et al. [2001] describe an implementation of ECC for the 16-bit TI MSP430x33x
family of microcontrollers. Weimerskirch et al. [2001] meanwhile, offer an
implementation of ECC for Palm OS and Brown et al. [2000] offer the same
for Research In Motion’s RIM pager [Brown et al. 2000].

ZigBee, on the other hand, shares this work’s aim of wireless security
for sensor networks albeit not with ECC but with AES-128 [ZigBee Alliance
2004], a shared-key protocol. Meanwhile, recommendations for ECC’s param-
eters abound, among academics [Lenstra and Verheul 1999], among corpora-
tions [Certicom Corporation 2004], and within government [IEEE Computer
Society 2000; National Institute of Standards and Technology 1999].

A number of implementations of ECC in software are freely available in
languages other than nesC. Rosing [1999] offers his C-based implementation
of ECC over F2p with both polynomial and normal bases. ECC-LIB [Zaroliagis
2004] and pegwit [Barwood 2006] offer their own C-based implementations over
F2p with polynomial bases. MIRACL [Shamus Software Ltd 2004] provides the
same, with an additional option for curves over Fp. LibTomCrypt [Denis 2004],
also in C, focuses on Fp. Dragongate Technologies Limited [2003], meanwhile,
offers borZoi and jBorZoi implementations of ECC over F2p with polynomial
bases in C++ and Java, respectively. Another implementation in C++, also using
a polynomial basis over F2p , is available through libecc [Wood 2004].

7. FUTURE WORK

Opportunities for future work certainly remain. Reduction of EccM 2.0’s ROM
requirements is certainly of interest, as the module currently consumes a non-
trivial amount (34 KB) of the MICA2’s 128-KB ROM. Optimizations of the
module’s nesC source code might allow us to reclaim some of those bytes; reim-
plementation of one or more functions in AVR assembly might allow us to re-
claim even more. Of course, as expectations of secure communications rise,
cryptographic primitives like those in TinySec and EccM 2.0 could simply be
integrated into hardware (much like Texas Instruments has done with AES
in its CC2420 transceiver [Texas Instruments 2007]), thereby reserving motes’
own resources for actual applications.

Further reduction of EccM 2.0’s running time, through source- or assembly-
level enhancements, is also of interest, wherever the module happens to be
housed, particularly in light of others’ recent results [Gura et al. 2004; Gupta
et al. 2005; Ning and Liu 2005; Wander et al. 2005]. Use of wNAF (width nonad-
jacent form) or wMOF (width mutual opposite form) might also help to reduce
our numbers of scalar multiplications [Okeya et al. 2004a].5 Worthy of consid-
eration for future versions of this module is a normal basis, an advantage of
which would be its implementation using only ANDs, XORs, and cyclic shifts,
beneficiaries of which are multiplication and squaring. (For this reason, nor-
mal bases tend to be popular in implementations of ECC in hardware.) Also of

5Personal correspondence with Seog Chung of the Gwangju Institute of Science and Technology.
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value, might be a hybrid of polynomial and normal bases, which is thought to
simultaneously leverage the advantages of each [Rosing 1999].

Of course, work by Gura et al. [2004] and Gupta et al. [2005] suggests that
the module might offer even better performance if reimplemented over Fp,
especially as expensive inversions could be avoided through use of projective, as
opposed to affine, coordinates. Although relatively efficient algorithms exist for
modular reduction (e.g., those of Montgomery [1985] or Barrett [1987]), selection
of a generalized Mersene number for p would also allow modular reduction to be
executed as a more efficient sequence of three additions (mod p) [Solinas 1999].
Also of potential benefit are mixed coordinates [Cohen et al. 1998], nonadja-
cent form [Miller 1986b], mutual opposite form [Okeya et al. 2004b], fractional
windows [Möller 2004], and signed binary representations [Kong and Li 2005;
Joye and Yen 2000].

Performance aside, EccM 2.0’s reliance on TinyOS’s RandomLFSR module is
troubling cryptographically, as this pseudo-random number generator (PRNG)
relies solely upon a mote’s unique ID for seeding, rather than upon any physical
source of randomness. Implementation of a superior PRNG is necessary for our
module’s security. Truly random bits might be captured from such sources as
local sensor readings, interrupt and packet-arrival times, and other physical
sources.

It also remains to define the protocol according to which a module like
EccM 2.0 would operate to rekey nodes. Prerequisite, for instance, will be some
form of authentication, lest adversaries be able to trigger rekeyings, thereby
sapping motes’ energy and otherwise interfering with communication.

8. CONCLUSION

Despite claims to the contrary, public-key infrastructure is viable on the
MICA2, certainly for infrequent distribution of shared secrets. Although our
implementation of ECC in 4 KB of primary memory on this 8-bit, 7.3828-
MHz device offers room for further optimization, its successors corrobo-
rate and demonstrate ECC’s viability as a foundation for PKI for sensor
networks.

The need for PKI’s success on the MICA2 seems clear. TinySec’s shared se-
crets do allow for efficient, secure communications among nodes. But such de-
vices as those in sensor networks, for which physical security is unlikely, require
some mechanism for secret keys’ distribution.

In that it offers equivalent security at lower cost to memory and bandwidth
than does Diffie-Hellman based on DLP, a public-key infrastructure for key
distribution based on elliptic curves is an apt and increasingly viable choice for
sensor networks.

SOURCE CODE

Source code for EccM 2.0, BenchmarksM (plus its MessageListener), and
our instrumented TinySecM is available for download from http://www.eecs.
harvard.edu/~malan/.
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