
Computer Science with Theatricality
Creating Memorable Moments in CS50 with the American Repertory Theater during COVID-19

David J. Malan
Harvard University
malan@harvard.edu

ABSTRACT
In Fall 2020, Harvard University transitioned entirely from on-
campus instruction to Zoom online. But a silver lining of that time
was unprecedented availability of space on campus, including the
university’s own repertory theater. In healthier times, that the-
ater would be brimming with talented artisans and weekly perfor-
mances, without any computer science in sight. But with that the-
ater’s artisans otherwise idled during COVID-19, our introductory
course, CS50, had an unusual opportunity to collaborate with the
same. Albeit subject to rigorous protocols, including face masks and
face shields for all but the course’s instructor, along with significant
social distancing, that moment in time allowed us an opportunity
to experiment with lights, cameras, and action on an actual stage,
bringing computer science to life in ways not traditionally possible
in the course’s own classroom. Equipped with an actual prop shop
in back, the team of artisans was able to actualize ideas that might
otherwise only exist in slides and code. And students’ experience
proved the better for it, with a supermajority of students attesting
at term’s end to the efficacy of almost all of the semester’s demon-
strations. We present in this work the design and implementation
of the course’s theatricality along with the motivation therefor and
results thereof. And we discuss how we have adapted, and others
can adapt, these same moments more modestly in healthier times
to more traditional classrooms, large and small.

CCS CONCEPTS
• Social and professional topics → Computational thinking;
CS1; Computer science education.

KEYWORDS
analogies, demonstrations, demos, memorablemoments, metaphors,
pedagogy, props, sets, teachable moments

ACM Reference Format:
David J. Malan. 2023. Computer Science with Theatricality: Creating Mem-
orable Moments in CS50 with the American Repertory Theater during
COVID-19. In Proceedings of the 54th ACMTechnical Symposium on Computer
Science Education V. 1 (SIGCSE 2023), March 15–18, 2023, Toronto, ON, Canada.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3545945.3569859

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9431-4/23/03. . . $15.00
https://doi.org/10.1145/3545945.3569859

1 INTRODUCTION
CS50 is Harvard University’s introductory course in computer sci-
ence in which we have long used metaphors and props to bring
computer science to life. But COVID-19 offered us an unusual op-
portunity to do so with lights, cameras, and action on stage as well,
creating all the more memorable moments for students, even via
Zoom.

With classes slated to be entirely online in Fall 2020, we discussed
in Summer 2020 how best to proceed. CS50 had long been part of
the university’s program in distance education as well as, more
recently, a massive open online course (MOOC). So we initially
considered reusing those videos rather than create from home, on
short notice, what we worried would be a lesser experience for
students via Zoom.

We soon realized, though, that not only was campus itself to be
unusually vacant, so was the university’s drama center just down
the road, home to the American Repertory Theater (A.R.T.) [10].
Moreover, the A.R.T.’s team of talented artisans, including experts
in lighting, sound, props, and sets was otherwise idled, with no
shows on stage. We therefore reached out to see if the theater could
instead be home to a course in computer science for a term. And
we asked the university if we could indeed return to campus to film
classes live from the A.R.T., albeit sans audience, with those present
on staff subject to COVID-19 protocols.

After much discussion and iteration on (pre-vaccine) protocols
especially, both answers came back as yes. A few full-time staff were
invited, but not required, to return to campus to help film the class.
(At the time, all were eager to return to work in some form.) Only
the instructor could be unmasked in the theater, with everyone else
wearing both face masks and face shields, maintaining a distance of
15 feet from each other at all times. The theater’s HVAC system was
upgraded to MERV 13 filtration, with at least 400 CFM of airflow
available per person.

And so we moved CS50 itself into the theater. Ironically, the
course’s usual classroom was another theater on campus, a historic
and beautiful one at that. Though that space lacked a back stage
in which to ready demonstrations and also lacked a “prop shop”
in which to build them from scratch. In healthier times, too, that
theater was so heavily scheduled that there just wasn’t time to do
much more than get in and get out.

In the A.R.T., then, we had an unprecedented opportunity to
collaborate with a team of artisans with materials and talents typ-
ically unavailable to classes. And so we spent that summer and
fall bringing computer science to life more theatrically than ever,
creating with props and sets all the more memorable moments for
students.

https://doi.org/10.1145/3545945.3569859
https://doi.org/10.1145/3545945.3569859

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. David J. Malan

With that said, theatricality does not require an actual theater.
(Though it did make it more fun, during that first year of COVID-
19 especially.) Indeed, some of our demonstrations that year were
simply higher-end alternatives to homemade equivalents that we
ourselves had made in years past, often with paper and tape.

We present in this work our repertoire of theatrical demonstra-
tions, each of which is designed not only to introduce some concept
but memorably so. Each analogy and metaphor aims to allow stu-
dents to use what they already know to understand some new
subject [6–8], particularly one that might be outside their own com-
fort zone. Our own analogies and metaphors tend to be higher-level
than those of Waguespack [11], which focus more on programming
primitives. Ours tend to be more algorithmic, too, simpler than
those of Forišek and Steinová [2] but with some overlap in domains
studied by Sanford et al. [9].

For us, this work was an opportunity to reflect on how and why
we do what we do, particularly when we don’t have a whole theater
and crew. We present each memorable moment, roughly one per
week, on a stage as a metaphor itself for any classroom, large or
small. Each demonstration is “unplugged,” requiring neither code
nor computer.

All lectures were live-streamed via Zoom to more than 500 stu-
dents off campus, though students could also watch asynchronously
on demand after, particularly in far-away time zones. The instructor
could see, and interact with, as many as 150 students at once across
three large displays. In practice, just enough students (optionally)
kept their cameras on for the instructor to feel like an audience
was present. Many more students asked questions live via chat of
the course’s teaching staff during each lecture, some of which were
relayed to the instructor to answer live on camera as well.

We begin in Section 2 with these lectures’ most memorable
moments, including discussion of each. In Section 3, we summarize
some of our less-helpful moments that we ourselves plan to re-tool.
In Section 4, we summarize our results and own takeaways. And in
Section 5, we conclude.

2 MEMORABLE MOMENTS
In this section, we present some of the course’s most helpful mo-
ments, along with discussion of their motivations and pitfalls. We
order them roughly chronologicaly, per the course’s own syllabus,
focusing primarily on those that a majority of students found “very
helpful,” per Figure 1. Students’ evaluations of each demonstration
are from an end-of-term survey, with an approximate response rate
of 500.

The course itself is taught primarily in C toward term’s start and
primarily in Python toward term’s end, with brief introductions to
SQL and JavaScript too. But most every demonstration is language-
agnostic, accompanied often by pseudocode.

In Fall 2020, with all students off campus, we enacted all demon-
strations ourselves, sometimes with virtual volunteers. (See Ap-
pendix for videos thereof.) In healthier times, students themselves
volunteer to come up on stage. In anticipation of healthier times
ahead, we emphasize the latter versions herein, to facilitate adop-
tion and adaptation by others. Evaluations thereof are from Fall
2020.

We claim only to have enacted the incarnations herein, the
demonstrations themselves undoubtedly originated and inspired
by our own teachers and colleagues. Italicized throughout are the
key concepts introduced.

2.1 Tearing a phone book to explain binary
search

The course’s first, and perhaps most memorable, moment, is meant
to introduce students to algorithms by way of a phone book with
hundreds of pages. (We estimate 1,024 sheets.) We ask students
rhetorically how we might find “David,” for instance, in that phone
book, assuming it’s sorted (for the sake of discussion) by first name.
We proceed immediately to search for him from the first page
toward the last, one sheet at a time. We pause after a few page
turns to ask whether the algorithm is correct. We confirm that it
is, because if David is in the phone book, we’ll eventually reach
him. We then ask whether the algorithm is efficient. We admit that
it isn’t, because if he (or whoever we’re calling) is toward the end,
it might take us nearly a thousand steps to reach. We then restart
the search, this time flipping two sheets at a time. We again ask
whether the algorithm is correct. It now isn’t, because David might
end up “sandwiched” between two sheets. We explain there’s a bug.
We ask whether the bug is fixable. We acknowledge that, if we find
that we’re alphabetically beyond David, we can just double-back
one or a few pages. Whereas the first algorithm might take as many
as one thousand steps, we explain, the second algorithm might take
only five hundred, give or take.

We ask how students themselves might search the same phone
book. We posit that most would open the phone book to, roughly,
its middle. We demonstrate such and claim that we’re in the “M”
section. We ask what we now know about the pages to the left and
to the right of that section. We confirm that David must be to the
left. We dramatically tear the phone book in half (down the spine)
and throw (the right) half of the problem away. We continue to
divide and conquer just as dramatically until we’re left with one
sheet. We ask how many steps that third algorithm might take. We
confirm roughly ten (i.e., log2 1,024). We pretend to call David. We
assure students that they have the intuition already to be successful
in computer science.

We then give the first two algorithms a name, linear search,
likening them to searching along a line, from left to right, albeit
at different rates. We then give the third algorithm a name, binary
search, noting that a prefix of “bi” implies two, just as we split
the phone book in two. We emphasize just how much faster that
third algorithm is: if the phone book were to double in size, the
first algorithm might take one thousand more steps, the second
algorithm might take five hundred more, but the third algorithm
would take only one more. We present Figure 2, explaining that the
third algorithm takes not linear but logarithmic time.

We translate the algorithm to pseudocode, introducing verbs as
functions, decisions as conditionals with Boolean expressions, and
repetitions as loops.

2.1.1 Discussion. Not only do 88% of students report this moment
to be helpful, per Figure 1, students anecdotally report this moment
to be the course’s most memorable as well, even years later. The
demonstration is not without pitfalls, though. If we start by asking

Computer Science with Theatricality SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

Figure 1: At term’s end, the course’s students were asked to evaluate the course’s demonstrations. A majority of students found
more than half of the demonstrations “very helpful.” And a majority of students found all of the demonstrations “very helpful”
or “somewhat helpful.”

Figure 2: We introduce students to algorithms in the course’s
first lecture, including high-level previews of linear search
and binary search. Depicted here is the time required to
search a phone book, using linear search (one or two sheets
at a time) or binary search, as a function of the size, 𝑛, of the
phone book.

students how we could search for David, instead of diving imme-
diately into a linear search ourselves, someone invariably shouts
that we should use binary search, using terminology that most of
their classmates would not yet know. When asked whether our
first algorithm is correct, students frequently answer no, conflating
inefficiency with incorrectness, though that itself is a teachable
moment. When asked how else to search for David, students fre-
quently propose starting with the “D” section, sometimes assuming
incorrectly that the phone book has an index along its edge (which,
admittedly, some do), sometimes not realizing that finding that,
would itself, take some number of steps. As for the demonstrations
themselves, it’s physically difficult to flip two sheets at a time at

a uniform speed, to convey that it’s (theoretically) twice as fast as
just one. It’s easier to find thick (commercial) yellow pages than
(residential) white pages, so we tend to pretend that David is in
yellow. Though it’s increasingly difficult to find any phone books
at all. And, as of 2021, at least one student reported not knowing
what a phone book even is. Though we now present a screenshot
of a mobile phone’s contacts, to liken our search to now-familiar
autocomplete.

2.2 Opening doors to explain linear and binary
search

We later revisit linear and binary search at a lower level. We erect
an array of seven doors in standalone door frames on stage, all
of them closed, side by side. Hiding behind each is a different life-
sized number (some with fur, some with googly eyes). We invite a
volunteer to try to find a particular number. We emphasize that the
doors are closed so that they must methodically index into them,
opening one at a time. Once the student finds the number, we ask
them to explain what their algorithm was.

We then close all the doors, rearranging the numbers behind
them, this time arranging them in ascending order, left to right. We
invite another volunteer to find a different number, disclosing that
the numbers are now sorted. Once the student finds the number, we
ask them to explain what their algorithm was and how the added
assumption helped them, if it did.

2.2.1 Discussion. 86% of students find this demonstration helpful,
per Figure 1. Though this demonstration is certainly possible with-
out all the doors. Without the luxury of a prop shop, we sometimes
cart with us seven small lockers instead (which could alternatively
be those in a hallway for small classes). And in smaller classrooms,
we typically use seven sheets of paper taped to a blackboard, with
numbers written in chalk behind them. For the first volunteer, we

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. David J. Malan

find it helpful to select a small number like 0, hidden behind the
rightmost door, as many students start from the left and move right,
thereby demonstrating that linear search is in𝑂 (𝑛). Some students
open doors randomly and even get lucky, finding the number imme-
diately by chance. Hilarity tends to ensue, all the more memorably,
if suboptimally, for a discussion of 𝑂 , but opportunely for a dis-
cussion of Ω as well. Almost all volunteers decide to apply binary
search to the second set of doors, so we find it helpful to prescribe
a number that we expect will be behind the last door they open.
We always use seven doors so that each subset has a well-defined
middle, without rounding. We daresay that fifteen or more might be
better for more repetition but might be unwieldy to set up. Ideally,
we use a different set of numbers for each search (one unordered,
one ordered), lest students remember the first search’s numbers
and deduce, in constant time, where some sorted number will be.

2.3 Plastic numbers to explain sorting
But how much time does it take to sort those numbers before we
can use binary search? To introduce students to comparison sorts,
we place an array of eight plastic numbers (each of which lights
up with a switch) on a table or shelf, initially unsorted. We ask a
volunteer to come up and sort them in ascending order. We then ask
the volunteer what their algorithm was. Invariably, they describe
some variant (or amalgam) of selection sort and bubble sort, though
not by name.

We then reset the numbers to their original, unsorted positions.
We propose to sort the array by selecting the smallest number
first. We emphasize that we must step through the array, left to
right, to determine which number is smallest; we can’t decide, at
a glance all at once, like the audience can. (We don’t bother with
closed doors, for time’s sake.) As we step through the array (literally,
walking a step at a time, left to right), we make clear that we’re
making mental note, as with a variable, of the index of the smallest
number we’ve seen yet. Once at the end of the array, we pick up
the number at that index and ask students where we should put it
instead. A student invariably proposes to put it at the beginning.
We remind them that we can’t just make room for it there on the
edge of the table or shelf; the array has a fixed length. A student
typically proposes that we shift everything to the right, in which
case we respond that it seems like a lot of (unnecessary) work. We
counter-propose swapping the smallest number with the leftmost
number. After all, if the latter was there randomly anyway, we’re
not necessarily making the problem any worse. We then light up
that smallest number, now in its final location. And we repeat for
the next-smallest numbers in turn. We observe that the whole list is
sorted once all numbers are lit. We reveal the algorithm’s name to
be selection sort. And we demonstrate it once more, this time using
digital animation [3] with vertical bars of short and tall heights
representing small and large numbers, respectively, to make the
selection of each smallest number more visually clear. We conclude
with an analysis of our total number of steps. We observe that our
search for the smallest number took 𝑛 steps (or 𝑛 − 1 comparisons);
our search for the next-smallest took 𝑛 − 1 steps; and so forth. We
ask students to trust us that the sum thereof is (𝑛2 + 𝑛)/2, which
is in 𝑂 (𝑛2). We explain why the algorithm, as defined, is also in
Ω(𝑛2) and, in turn, Θ(𝑛2).

We then reset the numbers again.We propose to do better.We ask
students to explain in what sense the array is unsorted. A student
typically cites an example of two (adjacent) numbers that are out
of order. We proceed to swap the two numbers, followed by any
other such pairs, left to right, again and again. As larger numbers
“bubble” their way toward the end of the list, we light them up once
in their rightmost positions. We again observe that the whole list
is sorted once all numbers are lit. We reveal the algorithm’s name
to be bubble sort. We demonstrate it once more, again using digital
animation to make the pairwise swapping and bubbling more clear.
And we again analyze our number of steps, comparing 𝑛 − 1 pairs
of numbers as many as 𝑛 − 1 times, totaling (𝑛 − 1)2 steps, which is
again in 𝑂 (𝑛2). But we note that, if we short-circuit this algorithm
after a pass with no swaps, we can achieve Ω(𝑛) this time instead.

We reset the numbers one final time, ideally on a shelf with one
or more empty shelves below (representing additional space). We
then introduce students tomerge sort by way of pseudocode, which
we then enact, merging sorted halves from one shelf to another. We
explain why merge sort is in Θ(𝑛 log𝑛). We conclude class itself
with a digital animation showing selection sort, bubble sort, and
merge sort in parallel, with the last dramatically finishing an order
of magnitude faster [1].

2.3.1 Discussion. 85% of students find these moments helpful as
well, per Figure 1. But we have learned not to leave too much of the
narrative to chance, as by asking too many questions. On occasion,
students have responded with algorithmic suggestions that don’t
quite map to the algorithms (and order thereof) that we hope to
discuss. Pedagogically, we prefer the progression from good, to
better, and to best, asymptotically speaking. More so than other
demonstrations, then, we tend to steer this one’s narrative. These
algorithms’ enactments can be messy as well without practice, as
it’s all too easy to stand in front of the numbers you’re swapping or
merging, blocking students’ own view. (And standing behind the
numbers instead otherwise involves doing everything backwards.)
When lacking for shelf space, we sometimes have students hold the
numbers themselves (or printouts thereof) and implement selection
sort and bubble sort physically, which tends to be fun but less
visually clear. The digital animations are good supplements, though,
as they present the same algorithms graphically, at a uniform pace.

2.4 Glasses of water to explain swapping
variables

To help students understand and implement in-place sorting algo-
rithms (or swap values more generally), we take out two glasses of
water, each colored differently via drops of food coloring. (We’ve
used milk and orange juice too.) We explain that each glass repre-
sents a variable, with the colored water therein its value. (By this
point in the course, students have used variables to store values but
not necessarily swap.) We ask for a student to volunteer to swap
the two liquids, somehow pouring the water from one glass into
the other and vice versa. The volunteer typically hesitates, at which
point we offer them an empty glass as a temporary variable with
which to perform the swap in three steps. We then translate the
steps to three lines of code for which students then have a mental
model.

Computer Science with Theatricality SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

2.4.1 Discussion. Per Figure 1, 83% of students find this demon-
stration helpful. It later lends itself, too, to our discussion of scope,
whereby those same lines of code seem to fail if implemented within
a function, in which the swap is local. We then introduce pointers as
a solution thereto, passing by reference rather than passing by vaule.
Amongmore comfortable students, we sometimes demonstrate how
to swap values without a temporary variable using bitwise XOR
operations instead. We have even tried to enact such (using just
two glasses) with water and oil, which theoretically don’t mix, but
not visibly enough for a good metaphor. On at least one occasion,
too, when asked to swap two liquids (without an empty glass), a
student simply swapped the positions of the two glasses, so we
have since clarified our instruction.

2.5 Mailboxes to explain pointers
To help students understand memory and pointers during our first
several weeks in C, we have long drawn pictures with arrows. More
helpful, perhaps, has been a pair of traditional mailboxes (on posts)
that we picked up from Home Depot. One has a name, 𝑃 , clearly
labeled as such with a sticker, akin to a family’s name on a mailbox.
When we open that mailbox, we find a value, a sheet of paper with
an address (e.g., 0x123) or, alternatively, a map wherein X marks a
spot. At that address or X across stage is another mailbox, labeled
as such, to which we point using an oversized foam finger (as you
might find in a stadium). Inside of that mailbox is a (non-pointer)
value or, better yet, treasure.

2.5.1 Discussion. 83% of students find this demonstration helpful,
per Figure 1. Better still, though, might be a whole wall of mailboxes,
as you might find in an apartment instead, which would resemble
a bank of memory more closely, albeit more challenging to set up.

2.6 Wooden blocks to explain linked lists
To help students visualize the data structures that they can then
build with those pointers, we build a linked list of students on
stage. We malloc one student at a time, asking each volunteer to
represent a node, holding some value in one hand and a foam finger
in the other, pointing at the next node in the list (or at the floor
if NULL). We emphasize that the nodes need not be contiguous in
memory; we deliberately spread volunteers out. And we ask the
audience how we might insert additional nodes at the start, end,
and middle of the list, enacting each in turn. Invariably, some nodes
are accidentally orphaned during insertions, at which point we
discuss memory leaks too.

2.6.1 Discussion. 79% of students find this demonstration helpful
as well, per Figure 1. With no students in person during COVID-19,
though, we temporarily replaced volunteers with large wooden
blocks, built by the prop shop to represent nodes, each connected to
another via an orange extension cord and (unpowered) receptacle.
Though we underappreciated just how heavy 3-feet-tall wooden
blocks would be to move on stage, an accidental metaphor, perhaps,
for how difficult memory can be to manage.

2.7 Refrigerator and milk to explain race
conditions

Toward term’s end, we introduce students to real-world issues in
computing like race conditions in the context of databases and SQL
specifically. We invite students to consider what could go wrong if
two users happen to “like” themost-liked egg on Instagram [4] at the
same time, if updating that post’s counter isn’t atomic. Andwe enact
that same issue with an old-time refrigerator on stage. We propose
that one roommate arrives home to discover the refrigerator out of
milk. And so they head out to buy more. In the meantime, another
roommate returns home, only to discover the same. They, too, head
out to buy more (without crossing paths with the other). The end
result is more milk than they can both drink before it goes sour. We
observe that the problem arises because, after one roommate makes
a decision based on the state of the refrigerator, itself a variable
of sorts, the other roommate makes a similar decision while that
variable’s value is in the midst of an update. We ask students how
to prevent such a “race.” Often, a student proposes that the first
roommate leave a note. We counter-propose, more dramatically,
that they instead lock the refrigerator outright (as with a chain
and padlock we have on stage), unlocking it only once the value is
updated. We then mention finer-grained transactions as well.

2.7.1 Discussion. 83% of students report this demonstration to be
helpful, per Figure 1. The need for a refrigerator, though, limits its
reenactment. We ourselves sometimes resort to a verbal narration
instead, an oral allegory of sorts [5], or to a plastic miniature thereof.

3 FUTUREWORK
We present more succinctly in this section the demonstrations that
fewer than half of students found “very helpful,” per Figure 1. (See
Appendix for videos thereof.) A majority of students still found
them, at least, “somewhat helpful,” so we plan to solicit additional
feedback in future terms in order to refine or rethink each.

3.1 Light bulbs to explain binary
We first introduce introduce students to binary by way of light
bulbs, each of which has a battery as well as a switch, akin to a
transistor. We start with just one such bit, to represent 0 and 1.
We then upgrade to three, to count in (unsigned) binary from 0 to
7. We later point out, after introducing Unicode, that the 64 light
bulbs along the edge of the theater’s own stage might actually
be encoding a message (e.g., HI MOM). We suspect we might be
spending too much time on this “bit.”

3.2 Grid of tiles to explain memory
Thanks to the theater’s prop show, we have an 8-by-8 grid of
wooden tiles that represents a bank of memory, with each tile a
byte. The tiles are dry erase-friendly, allowing us to draw values
atop them. Beneath each tile is an icon of Oscar the Grouch rep-
resenting a garbage value as well. We use the grid to depict stack
frames especially, to clarify why swapping two values inside in a
function has no effect on the caller’s copies thereof (i.e., other tiles),
unless the values are passed in by reference. Moving the (magnetic)
tiles tends to be clumsy, though, so we suspect we can improve this
demonstration through more practice or digitization thereof.

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. David J. Malan

3.3 Buckets of cards to explain hash tables
When discussing hash tables in the context of data structures, we
introduce students to hashing by way of oversized playing cards,
hashing each card into one of four buckets (also from Home Depot)
according to its suit. Because this particular demonstration only
indirectly relates to how we later hash strings into actual hash
tables, we might replace this one altogether.

3.4 Stacking bricks to explain recursion
When discussing recursion, we observe that a pyramid of “bricks”
from Super Mario Bros. is itself a recursive structure whereby a
pyramid of height 𝑛 is but a pyramid of height 𝑛 − 1 plus another
layer of bricks. Because of gravity, though, it’s difficult to build such
(with cardboard blocks) on stage, as by lifting 𝑛 − 1 layers to add
the other. We might revert to presenting this structure graphically.

3.5 Phone calls to explain callback functions
When surveying paradigms in other languages at term’s end, we in-
troduce students to asynchronous functions and callbacks in JavaScript
by calling a colleague during class on the phone. Upon picking up,
they explain that they’ll need to call us back with the answer to
some question. Class is later interrupted with an asynchronous
callback. We spend relatively little time on JavaScript itself, so we
suspect the returns of this demonstration are simply low in terms
of opportunities for application thereof.

3.6 Black box to explain functions
When first introducing students to functions, we take out an actual
black box, inserting into it one or more inputs (e.g., two slips of
paper with numbers) and taking out some output (e.g., another slip
of paper, prepared in advance with the sum of those numbers). We
explain that we don’t (need to) know how the box works inside;
its implementation details are, for now, abstracted away. Insofar as
we have tended to present this demonstration before implementing
actual functions with code, we suspect it’s not obvious during the
demonstration itself what we are actually abstracting away. We
might try presenting it afterward instead, so that it’s clearer in
retrospect what the abstraction represents.

4 RESULTS
When asked at term’s end what they thought of the course’s use
of physical props during lectures to help explain topics, nearly all
students reported loving (65%) or liking (27%) the same, per Figure 3.
They were “engaging” and “fun,” reported some students. “It really
helped me understand at a different level and helped me remember
the material better,” reported one student. And “they made me com-
prehend something instead of just recalling it,” explained another.
“It helped to visualize all of the code and ideas that would otherwise
just be letters, symbols, numbers, and indents,” elaborated another.

That said, not all students felt the same, with time spent a con-
cern. For instance, one found that “they were often unnecessary.
Helpful, but unnecessary. For me, an animated diagram on the slides
would have been sufficient, and often felt that these demonstrations
took up much more time than necessary.” Another distinguished
between engagement and learning: “I liked them because they were
engaging, but I don’t think they helped a lot with my learning.” But

Figure 3: When surveyed at term’s end, 321 students (65%)
reported that they “loved” the course’s use of physical props
during lectures to help explain topics, and 134 students (27%)
reported that they “liked.” Students were separately asked to
elaborate why in prose as well.

engagement did recur as a theme: “it really helped me stay engaged,
especially in the virtual nature of this semester.” And as another
student acknowledged, “I don’t really get value from stuff like that
but I know it helps others.”

To be fair, we have not run a controlled experiment, creating
memorable moments for some students but not others. Nor have we
ourselves tracked students’ performance beyond course’s end. But
that so many students reported those moments as still memorable
at course’s end is encouraging for long-term retention and com-
fort as students move on to higher-level courses next with those
foundations in place. And we do plan to reduce time spent on some
demonstrations in order to strike a better balance.

5 CONCLUSION
CS50’s flair for theatricality predates COVID-19 itself. But a silver
lining of that particular moment in time was an opportunity for us
to collaborate with a team of artisans to bring computer science all
the more to life on a stage, for an audience, no less, that could not be
there in person. The collaboration, too, proved an opportunity for
us to reflect on how we might introduce students more effectively
to that which is not familiar by way of that which already is, via
analogies, metaphors, and theatrical props. Ultimately, the collab-
oration did not enable pedagogical techniques that aren’t already
available to us and others off-stage as well, equipped as we more
often are with just paper and tape. But it did come at just the right
time for so many students who were otherwise isolated at home.

APPENDIX
See https://www.youtube.com/cs50 for videos of every demonstra-
tion herein.

ACKNOWLEDGEMENTS
Many thanks to the author’s own teachers who originated or in-
spired thesemoments and somanymore, including Brian Kernighan,
Henry Leitner, Margo Seltzer, et al. And to CS50’s own team, in-
cluding Doug Lloyd, Brian Yu, Carter Zenke, et al.

And many thanks to the American Repertory Theater’s team of
artisans for bringing to life so many of these moments on stage.

https://www.youtube.com/cs50

Computer Science with Theatricality SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

REFERENCES
[1] Viktor Bohush. 2022. SortingAlgorithmAnimations. https://github.com/vbohush/

SortingAlgorithmAnimations
[2] Michal Forišek andMonika Steinová. 2012. Metaphors andAnalogies for Teaching

Algorithms. In Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education (Raleigh, North Carolina, USA) (SIGCSE ’12). Association for
Computing Machinery, New York, NY, USA, 15–20. https://doi.org/10.1145/
2157136.2157147

[3] David Galles. 2022. Comparison Sorting Algorithms. https://www.cs.usfca.edu/
~galles/visualization/ComparisonSort.html

[4] Egg Gang. 2022. https://www.instagram.com/world_record_egg/
[5] Jeisson Hidalgo-Céspedes, Gabriela Marín-Raventós, Vladimir Lara-Villagrán,

and Luis Villalobos-Fernández. 2018. Effects of oral metaphors and allegories on
programming problem solving. Computer Applications in Engineering Education
26, 4 (2018), 852 – 871.

[6] D. Hofstadter and E. Sander. 2013. Surfaces and Essences: Analogy as the Fuel and
Fire of Thinking. Basic Books.

[7] Yu-chen Hsu. 2006. The Effects of Metaphors on Novice and Expert Learners’
Performance and Mental-Model Development. Interact. Comput. 18, 4 (July 2006),
770–792. https://doi.org/10.1016/j.intcom.2005.10.008

[8] George Lakoff and Mark Johnson. 1980. Metaphors we Live by. University of
Chicago Press, Chicago.

[9] Joseph P. Sanford, Aaron Tietz, Saad Farooq, Samuel Guyer, and R. Benjamin
Shapiro. 2014. Metaphors We Teach By. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (Atlanta, Georgia, USA) (SIGCSE ’14).
Association for Computing Machinery, New York, NY, USA, 585–590. https:
//doi.org/10.1145/2538862.2538945

[10] American Repertory Theater. 2022. https://americanrepertorytheater.org/
[11] Leslie J. Waguespack. 1989. Visual Metaphors for Teaching Programming Con-

cepts. In Proceedings of the Twentieth SIGCSE Technical Symposium on Computer
Science Education (Louisville, Kentucky, USA) (SIGCSE ’89). Association for Com-
puting Machinery, New York, NY, USA, 141–145. https://doi.org/10.1145/65293.
71203

https://github.com/vbohush/SortingAlgorithmAnimations
https://github.com/vbohush/SortingAlgorithmAnimations
https://doi.org/10.1145/2157136.2157147
https://doi.org/10.1145/2157136.2157147
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.instagram.com/world_record_egg/
https://doi.org/10.1016/j.intcom.2005.10.008
https://doi.org/10.1145/2538862.2538945
https://doi.org/10.1145/2538862.2538945
https://americanrepertorytheater.org/
https://doi.org/10.1145/65293.71203
https://doi.org/10.1145/65293.71203

	Abstract
	1 Introduction
	2 Memorable Moments
	2.1 Tearing a phone book to explain binary search
	2.2 Opening doors to explain linear and binary search
	2.3 Plastic numbers to explain sorting
	2.4 Glasses of water to explain swapping variables
	2.5 Mailboxes to explain pointers
	2.6 Wooden blocks to explain linked lists
	2.7 Refrigerator and milk to explain race conditions

	3 Future Work
	3.1 Light bulbs to explain binary
	3.2 Grid of tiles to explain memory
	3.3 Buckets of cards to explain hash tables
	3.4 Stacking bricks to explain recursion
	3.5 Phone calls to explain callback functions
	3.6 Black box to explain functions

	4 Results
	5 Conclusion
	References

