Teaching CS50 with Al

Leveraging Generative Artificial Intelligence in Computer Science Education

Rongxin Liu
Harvard University
Cambridge, MA, USA
rongxinliu@cs50.harvard.edu

Andrew Holmes
Harvard University
Cambridge, MA, USA
aholmes@college.harvard.edu

ABSTRACT

In Summer 2023, we developed and integrated a suite of Al-based
software tools into CS50 at Harvard University. These tools were
initially available to approximately 70 summer students, then to
thousands of students online, and finally to several hundred on
campus during Fall 2023. Per the course’s own policy, we encour-
aged students to use these course-specific tools and limited the
use of commercial Al software such as ChatGPT, GitHub Copilot,
and the new Bing. Our goal was to approximate a 1:1 teacher-to-
student ratio through software, thereby equipping students with
a pedagogically-minded subject-matter expert by their side at all
times, designed to guide students toward solutions rather than offer
them outright. The tools were received positively by students, who
noted that they felt like they had “a personal tutor” Our findings
suggest that integrating Al thoughtfully into educational settings
enhances the learning experience by providing continuous, cus-
tomized support and enabling human educators to address more
complex pedagogical issues. In this paper, we detail how AI tools
have augmented teaching and learning in CS50, specifically in
explaining code snippets, improving code style, and accurately re-
sponding to curricular and administrative queries on the course’s
discussion forum. Additionally, we present our methodological ap-
proach, implementation details, and guidance for those considering
using these tools or Al generally in education.

CCS CONCEPTS

« Social and professional topics — CS1; « Applied computing
— Computer-assisted instruction.

KEYWORDS

Al, artificial intelligence, generative Al large language models,
LLMs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03...$15.00
https://doi.org/10.1145/3626252.3630938

Carter Zenke
Harvard University
Cambridge, MA, USA
carter@cs50.harvard.edu

Patrick Thornton
Harvard University
Cambridge, MA, USA
patrickthornton@college harvard.edu

Charlie Liu
Yale University
New Haven, CT, USA
charlie liu@yale.edu

David J. Malan
Harvard University
Cambridge, MA, USA
malan@harvard.edu

ACM Reference Format:

Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton,
and David J. Malan. 2024. Teaching CS50 with Al: Leveraging Generative
Artificial Intelligence in Computer Science Education. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE
2024), March 20-23, 2024, Portland, OR, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3626252.3630938

1 INTRODUCTION

Amid collective enthusiasm for generative artificial intelligence
(AI) built atop large language models (LLMs), there is apprehension
about AT’s ability to disrupt education. Students can now complete
assignments or write essays entirely with Al, undermining the
fundamental goals of teaching and learning. As such, a common
response to this development among educators has been to forbid
the use of Al outright.

We offer an alternative approach, having chosen instead to di-
rectly incorporate generative Al into CS50, Harvard University’s
introductory course in computer science for majors and non-majors
alike. We embraced generative Al and harnessed its capabilities
within the classroom, while also implementing guardrails to uphold
academic integrity and promote meaningful learning. Because CS50
boasts a large on-campus student body and a global online presence
via OpenCourseWare, the course is well-suited for evaluating the
effectiveness of different pedagogical approaches towards Al

In Summer 2023 and Fall 2023, we actively tested an Al-powered
chatbot, implemented as a virtual rubber duck (a la rubber-duck de-
bugging), developed specifically for CS50. We initially deployed this
CS50 Duck (aka CS50.ai) first to approximately 70 summer students,
then to thousands of students online, and finally to approximately
500 on-campus students. This paper chronicles our development
of CS50.ai, detailing the challenges faced, solutions proposed, and
results achieved, all toward realizing a long-held aspiration of ours:
a 1:1 teacher-to-student ratio.

2 MOTIVATION

Teaching CS50 with Al was an attempt to confront the apprehen-
sion of Al in education. Critics have described tools like ChatGPT
as a “plague upon education” [12], given their potential to facilitate
academic dishonesty by allowing students to present Al-generated
work as their own. As educators concerned with issues of academic
dishonesty ourselves [7], we recognized the complications that

https://doi.org/10.1145/3626252.3630938
https://doi.org/10.1145/3626252.3630938

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

some Al tools posed by being too helpful to students, particularly
novices in computer science. Like other courses, we quickly imple-
mented policies that banned tools such as ChatGPT, GitHub Copilot,
and other Al-based software that suggest or complete answers to
questions or lines of code. Simultaneously, we felt that it would be
a missed opportunity if we did not leverage the newfound power
of Al to enhance students’ learning.

Prior studies have explored the adaptation of Al-based tools
to better serve students. Researchers at Stanford University have
demonstrated the use of Al in education through a meta-learning
ProtoTransformer, which provided feedback on student code with
a precision higher than that of teaching assistants [13]. In addition,
Reis et al. conducted a study showing that Al-generated personal-
ized hints significantly reduced student effort in deriving correct
solutions [10]. Emerging evidence suggests a potential for Al to
improve the learning feedback process, promote critical thinking,
and bolster problem-solving skills [11].

Specifically for CS50 on campus, Al can help narrow the gap
between the ideal 1:1 teacher-student ratio and the reality of re-
source constraints. Although we are fortunate to have numerous
teaching fellows (TFs), the diverse needs of a 500-student class are
demanding. Al is already proving essential in supporting learners
of all levels [14], making it a valuable tool in present-day education.

In online courses of sufficient size, students who enroll might
never talk live with an instructor. Indeed, in CS50’s massive open
online course (MOOC) — which has more than 5 million registrants
as of writing — it is often the case that the only humans a student
may turn to for help are other students. If an Al assistant could
respond with more expertise than students and behave like a good
tutor might, it would be a breakthrough for students who otherwise
might never interact with a course instructor.

Ultimately, our goal was to approximate a 1:1 teacher-to-student
ratio, providing each student with a personal subject-matter expert
by using generative LLMs like OpenATI’s GPT-4 [9] to emulate a
good teacher: guiding students, not disclosing answers directly, and
staying up-to-date with course changes.

3 SOLUTIONS

We initially pursued simple proofs of concept that evolved into
more advanced projects, intending to provide a comprehensive
suite of tools that could assist students with learning CS50’s cur-
riculum. These tools include: 1) “Explain Highlighted Code” for
quick, understandable code explanations, 2) an enhanced version of
style50 for evaluating code style, and 3) the CS50 Duck, a chatbot
for answering course-related inquiries via multiple platforms.

All these tools are powered by our unified web application,
CS50.ai. In addition to delivering fast and accurate Al-generated
responses, CS50.ai has built-in “pedagogical guardrails” that align
with our teaching philosophy of guiding students, rather than pro-
viding direct solutions to questions.

3.1 Explaining Highlighted Code

We first created an “Explain Highlighted Code” (EHC) VS Code
extension to emulate behavior by human instructors, providing stu-
dents with immediate explanations in plain English for code snip-
pets. (Students need only highlight one or more lines of code to have

Rongxin Liu et al.

it explained.) This tool complements CS50’s existing correctness-
testing tool, check50, offering instant clarifications on the seman-
tic aspects of code. Now that instant code clarification is always
available to students, in-person office hours are ideally made even
more productive, given students’ heightened ability to deal more
exclusively with higher-level design issues instead of lower-level
clarification questions.

3.2 Improving Code Style

We also re-implemented style50 — the course’s command-line tool
for checking the style of one’s code — as a VS Code extension with
a graphical user interface. This new version displays side-by-side
the differences between a student’s code and a better-formatted
version based on CS50’s style guide. The extension also provides
an “Explain Changes” button that, when clicked, provides students
with natural-language explanations of style5@’s suggestions at
the click of a button. These features have transformed style50 into
an interactive learning tool that provides guidance akin to that of
a human instructor, enabling students to more clearly understand
and apply syntactic improvements to their code.

3.3 CS50 Duck

All of our Al tools are powered by the same CS50.ai backend, en-
suring consistency with our approach to using Al To give students
relatively unfettered access to the Al model, similar to a ChatGPT-
like conversational format, we host a standalone website for the
CS50 Duck. This allows students to interact directly with GPT-4 in
a controlled manner, as illustrated in Figure 1.

CS50.ai & ®

ddb

Quack. | am CS50's duck debugger (ddb), an experimental Al for rubberducking. Quack. My replies might not always be
accurate, so always think critically and let me know if you think that I've erred. Conversations are logged for debugging's
sake. Quack.

you
1 have the following python code:
x = input(“integer x: *)
y = input(“integer y: *)
print(f'The sum is: {x+y}")

Why it doesn't work as expected?

ddb
The issue you're encountering is due to Python treating the input from the input () function as a string by default. When you
try to add two strings together, Python concatenates them instead of performing arithmetic addition.

To fix this, you need to convert the inputs to integers before adding them. You can do this using the int () function in Python.
Here's a hint:

X = int(input("integer x: "))
y = int(input(“integer y: "))

Ask a question 4

Figure 1: The main page of CS50.ai, where students can chat
with the CS50 Duck, an interactive “duck debugger” (ddb).

The CS50 Duck is available both via the CS50.ai website and a
separate VS Code extension, per Figure 2; both forms provide an
identical Al assistant to students. The CS50 Duck leverages the
contextual understanding of GPT-4 to provide a truly interactive
teaching and learning experience, all the while adhering to CS50-
specific pedagogical guidelines.

Teaching CS50 with Al

€550 DUCK DEBUGGER > D 2 styieso 1)

Figure 2: CS50 students can also access the CS50 Duck within
VS Code to chat about CS-related topics, explain highlighted
code, or suggest code style improvements.

3.4 CS50 Duck on Ed

We have long used Ed [2], a third-party platform, as the course’s
online discussion forum for asynchronous help. Ed allows students
to ask questions and receive guidance from the course staff and
fellow students, streamlining threaded discussions, minimizing
question duplication, and facilitating peer collaboration.

To further improve Ed’s functionality, we integrated the CS50
Duck into the platform by utilizing its HTTP request feature. As
shown in Figure 3, the CS50 Duck participates in threads and an-
swers questions as needed. By creating a dedicated API endpoint
in our CS50.ai application for the CS50 Duck on Ed, we can control
responses generated by GPT-4 and ensure that the CS50 Duck’s be-
havior aligns with the course’s curriculum and teaching philosophy,
rather than simply giving outright answers to students’ inquiries.

o John Harvard ~ * ° 29
PN STAR WATCHING VIEWS

Whatis flask exactly?

1 Answer

550 Duck sor £ enporsen

Flask is a micro web framework written in Python. It is classified as a microframework because it does not
require particular tools or libraries, it has no database abstraction layer, form validation, or any other
v/ components where pre-existing third-party libraries provide common functions.

Figure 3: The CS50 Duck in action on Ed. A student asked a
question, and the CS50 Duck replied with a succinct answer,
which a human staff member endorsed as correct.

Through the CS50 Duck on Ed, we aimed to enrich the learning
experience by providing students with access to immediate, care-
fully generated responses. By doing so, we seek to complement
human instruction, not to replace it. We enforce this distinction
by making all of theCS50 Duck responses subject to endorsement,
amendment, or deletion by a human staff member; Ed’s own user
interface provides options for each.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

4 IMPLEMENTATION DETAILS

As shown in Figure 4, we implemented CS50.ai as the backend for
all of our Al tools to manage communications between each user
and GPT-4. (Specifically, we use the version of GPT-4 that is hosted
on Microsoft Azure [8].) Student queries are first relayed to CS50.ai,
where any personally identifiable information (PII) is removed.
Then, the queries are further processed into structured queries,
known as “prompts.” These prompts are constructed with course-
specific rules and guidelines — in addition to the original student
queries — in order to guide GPT-4 towards generating context-aware
responses with high accuracy.

For student queries coming from the Ed discussion platform,
CS50.ai uses a technique called “retrieval-augmented generation”
(RAG) when generating responses. RAG enhances the accuracy
and reliability of generative LLM models with facts fetched from
external sources, reducing “hallucinations” where models make
up false information. Factual information is added to our prompts
to ground GPT-4 in generating responses that are (more likely)
accurate and contextually relevant.

The resulting architecture is a streamlined system where CS50.ai
and GPT-4 work together to quickly deliver correct and helpful
answers to students.

Vector DB

A

RAG

Prompt
PIl Anonymization

Browser | Useravey
Ed Bot CS50.ai [piempiEcion Azure

Attack Detection OpenAl
R
VS Code | g Response | GPT Response

vy

Figure 4: The system architecture of CS50.ai. GPT-4 gener-
ates responses to student queries and optionally employs
a retrieval-augmented generation technique to improve
response accuracy by incorporating facts from external
sources.

4.1 Prompts

During interactions with LLM models like GPT-4, prompts control
the conversation. Requests made from CS50.ai to GPT-4 always
include a system prompt, which sets the course-specific rules and
guidelines, and a user prompt, which includes the actual student
query that GPT-4 answers.

One can use different prompts to create various “agents” in
solving task-specific problems. For example, we start each CS50.ai
interaction with a custom system prompt that tells the model to act
as a teaching assistant for CS50. Then, we send user prompts that
incorporate actual student queries within a set of fixed instructions.
After many iterations, we have created multiple configuration files
(in YAML format) with different system prompts and user prompt
templates for various use cases, such as fielding CS-related ques-
tions, explaining code snippets, and offering feedback on code style.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

4.2 Chat Completion

LLMs can take a series of prompts as input and return Al-generated
messages as output. CS50.ai uses OpenAI’s Chat Completion API,
which is an endpoint that processes an array of prompts — each
with a defined role (“system,” “user,” or “assistant”) — to mimic a
conversation.

A conversation starts with a system prompt that sets the desired
context and behavior for the assistant to follow. Subsequent user
prompts contain the actual queries or statements for the LLM to
respond to.

Once we construct the system and user prompts, we send them
as input to the Chat Completion API for processing. To simulate
conversational flow, we append the output message to an array that
also stores user queries. This entire message history is then resent
to GPT-4, providing context for the next Al-generated response.
The cycle continually repeats as the conversation unfolds.

4.3 Retrieval-Augmented Generation (RAG)

LLMs can sometimes “hallucinate” and generate plausible-sounding
yet incorrect (or even outright nonsensical) responses [3]. This
behavior occurs because Al models, which are trained on a vast
amount of text data, learn to generate text fluently without neces-
sarily valuing factual correctness. Additionally, LLMs sometimes
have a knowledge cut-off, which limits their information to what
they learned up until their most recent training session, without
access to real-time updates or post-training events.

To mitigate this, a technique known as retrieval-augmented gen-
eration (RAG) can be used to improve the accuracy and reliability
of LLMs by grounding them with facts from external sources [5].
Specifically, we utilize OpenAI’s Embeddings API to create text
embeddings for CS50 lecture captions, forming a ground-truth ex-
ternal data source. These embeddings are vector representations
(i.e. numerical values) that capture semantic meaning for machine
learning algorithms, allowing for more effective interpretation and
utilization of data.

Our data preparation process involves segmenting English cap-
tions from the course’s lectures into short, self-contained 30-second
segments. We then create embeddings for these segments using
OpenAT’s text-embedding-ada-002 model and store the results in a
ChromaDB vector database. Afterwards, we also create embeddings
for each incoming student query and perform an embedding search
in the vector database to retrieve lecture caption segments ranked
by relevance. Finally, to produce an Al-generated response, we pro-
vide GPT-4 with the student query and the top-N most relevant
lecture caption segments in plain text.

By using RAG, we can reduce the chances of “hallucination”
when GPT-4 responds to lecture-specific questions, without needing
to fine-tune or retrain an LLM (which is often time-consuming and
computationally expensive).

4.4 Prevention of Prompt-Injection Attacks

A prompt injection attack occurs when a malicious user feeds mis-
leading prompts into an LLM model to manipulate its behavior, such
as tricking GPT-4 into providing full-blown homework solutions.

Rongxin Liu et al.

To prevent such attacks, we have implemented a “guard” fea-
ture in CS50.ai that checks every student request for atypical non-
alphanumeric patterns, which could indicate a potential attack. If
the guard is triggered, CS50.ai consults GPT-4 through an indepen-
dent API call to determine whether the student request is regular
input or a prompt injection attack. If an attack is confirmed, the sys-
tem immediately aborts the current user session, protecting itself
from misuse.

4.5 Ed Integration via HTTP Requests

CS50.ai is designed to proxy and augment HTTP requests, thereby
allowing potential integration with third-party online platforms.
For example, on Ed, interactions typically occur within threads
(topics or questions posted by students) and comments (replies to
these threads). The CS50 Duck on Ed is programmed to monitor
these threads and comments, determining the need to respond
based on predefined criteria, such as a thread’s category.

When a student posts a thread, the CS50 Duck on Ed performs a
series of checks to verify if the thread is a question, confirm that it
wasn’t posted by a staff member, and check if it falls within certain
predefined categories. If these conditions are all met, the CS50 Duck
on Ed sends a request to a CS50.ai API endpoint with thread-related
data to generate a response.

By leveraging the flexibility of CS50.ai with processing HT TP
requests, we expanded the CS50 Duck’s reach and impact across
different online platforms, providing students with high-quality ed-
ucational support regardless of where they engage with the course.

4.6 Usage Throttling

CS50.ai implements a throttling mechanism via visually displayed
hearts, where each student starts with 10 hearts and regains one
heart every three minutes. Each interaction with the CS50 Duck
consumes a heart, preventing spam-like behavior. This helps reduce
the cost of running CS50.ai, given that we are charged for each
GPT-4 request that we send.

Usage throttling also holds valuable pedagogical implications for
students. First, it promotes thoughtful interaction with the CS50
Duck by encouraging students to carefully consider their questions.
The underlying goal is to foster independent problem-solving skills
and the ability to formulate precise questions, which is essential
in learning itself. Second, usage throttling encourages reflective
breaks, nudging students to step back and revisit complex problems
with a refreshed and renewed perspective.

5 RESULTS

5.1 Feedback from Students

During Summer 2023, approximately 70 students enrolled in CS50
were asked to provide feedback on our Al'tools via a non-anonymous
survey at the end of the course, and the responses were almost en-
tirely positive. Students praised our Al tools for their helpfulness,
effectiveness, and reliability in guiding them through challenging
problems:

o “absolutely unreal. felt like having a personal tutor... i love
how AI bots will answer questions without ego and without

Teaching CS50 with Al

Jjudgment, generally entertaining even the stupidest of ques-
tions without treating them like they’re stupid. it has an, as
one could expect, inhuman level of patience.”

“Treally appreciated the Al tools, especially since we are now
in a time when using AI will be very common in code. So it
was nice to already get acclimated to working alongside these
tools instead of feeling like those tools are working against us.
I also appreciated that CS50 implemented its own version of
AL because I think just directly using something like chatGPT
would have definitely detracted from learning”

“The AI tools were extremely helpful for me. They explained
concepts to me that I did not know well, and taught me new
concepts that I needed to know to implement for specific prob-
lem sets. The Al tools gave me enough hints to try on my own
and also helped me decipher errors and possible errors I might
encounter.”

In the subsequent Fall 2023 semester, we conducted two more
non-anonymous surveys of approximately 500 on-campus students
- one mid-semester and the other at the end - to gauge students’
feedback and reactions toward our Al tools. Mid-semester, students
reported varied but significant usage:

(1) 17% used the tools more than ten times a week, while 32%
used them 5-10 times a week. Additionally, 26% used them
2-5 times weekly, and 25% used them less than twice per
week.

(2) Regarding perceived helpfulness, the majority of students
found the course’s Al tools beneficial. Specifically, 47% re-
ported them to be “very helpful,” 26% “helpful,” 21% “some-
what helpful,” and 6% “not helpful”

(3) When assessing the effectiveness of these tools in enhanc-
ing learning, students’ responses were also favorable. 35%
reported them to be “very effective,” 35% “effective,” 25%
“somewhat effective” and 5% “not effective”

(4) Even though students were advised to “think critically” and
not assume that Al-generated messages are always correct,
about 23% felt “very confident” in our Al tools’ response ac-
curacy, 46% “generally confident,” 27% “somewhat confident,”
and 4% “not confident’’

As for the survey at the end of the semester, 73% of students
have responded as of this writing:

(1) 50% of students reported using our Al tools “frequently,”
while 28% indicated that they used them “constantly,” sug-
gesting a high level of reliance on these tools. Meanwhile,
19% of students used them “infrequently,” and just 3% never
used them.

(2) Our AI tools were well-perceived as beneficial, with 33%
finding them “always helpful,” 55% of students finding them
“frequently helpful” However, 11% found them “infrequently
helpful,” and 1% found them “never helpful”

(3) Overall satisfaction with our Al tools was high: 53% of stu-
dents “loved” them, and 33% “liked” them. On the other hand,
13% of students were neutral, and only 1% “disliked” them.

Anecdotally, we also found that many students would anthropo-
morphize the CS50 Duck, viewing it as a friendly face. We believe
this effect contributed to the success of our Al tools, as students
felt comfortable chatting with a lovable duck, instead of a faceless

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

robot. As one student declared, “Love love loved the duck. We’re
friends now.”

However, there have been a few instances where our Al tools
misunderstood questions and provided incorrect advice. Occasional
inaccuracies alone would be permissible — human teachers are
surely susceptible to error themselves — but Al tends to exhibit a
tone of complete and authoritative confidence even when wrong,
while humans might qualify the certainty of their answers. Similar
to inherent limitations with other AI chatbots, CS50.ai occasion-
ally exhibits misguided confidence when “hallucinating” incorrect
information, but recent work suggests that LLMs could soon be
trained to express uncertainty when appropriate [6].

Some students also suggested reducing the usage throttling, since
they preferred to chat with the CS50 Duck without any restrictions.
Given that throttling is in place for both cost and pedagogical
purposes, we do not plan on eliminating usage throttling in the
near future, but we will continue to adjust this mechanism as costs
and usage fluctuate.

5.2 Response Accuracy

To evaluate the performance of the CS50 Duck on Ed during Sum-
mer 2023, we asked a senior course staff member — who was separate
from the development team — to review responses generated by
CS50.ai. The CS50 Duck posted a total of 64 answers on Ed for our
summer course, out of which 25 were related to curricular matters,
while the remaining 39 were related to administrative matters. From
this, we determined that:

e 22 out of 25 (88%) curricular answers were correct.
e 30 out of 39 (77%) administrative answers were correct.

The slight decrease in accuracy regarding administrative mat-
ters was expected, given that the underlying GPT-4 model was
trained on data with a time cutoff. The syllabus for CS50 has evolved
over time, causing GPT-4 to be out-of-sync with the course’s latest
changes. As for the 88% curricular accuracy rate, we found this to be
a notable improvement over GPT’s baseline performance with cod-
ing questions. Recent work indicates that ChatGPT is correct only
48% of the time when addressing software engineering topics [4].

With the Fall 2023 semester having just concluded as of this writ-
ing, we only just began to evaluate the CS50 Duck’s most recent
performance on Ed. Of the CS50 Duck’s 180 answers in Fall 2023,
only 70 were “endorsed” by human staff, which would seem to
suggest an accuracy of only 39% (a notable decrease from Summer
2023). However, we suspect that this calculation understates the
CS50 Duck’s actual accuracy, as student usage of Ed has decreased
significantly. In Fall 2022, students asked an average of 0.89 ques-
tions each via Ed; in Summer 2023, students asked an average of
1.1 questions each via Ed; yet in Fall 2023, students only asked an
average of 0.28 questions each via Ed. (These numbers are averaged
over on-campus and off-campus students alike.)

Since CS50.ai was fully deployed by Fall 2023, we suspect that
many students transitioned to synchronous (i.e. more conversa-
tional) interactions with the CS50 Duck via VS Code and the stan-
dalone CS50.ai website, instead of Ed. We also wonder if students
tended to escalate more complex questions to Ed, during situations
where they already tried asking the CS50 Duck elsewhere for help
but didn’t receive a satisfactory response, thus needing to ask on

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Ed for a human reply. Because we just began reviewing data from
Fall 2023, these theories are only conjectures at this point in time.

5.3 Usage Summary

Since June 2023, our Al tools have been used extensively both on
campus and globally, with more than 50,000 unique users using
CS50.ai as of December 2023. We have processed more than 1.8
million queries in total.

The number of daily unique active users has significantly in-
creased, starting at approximately 200 in June 2023, rising to 1,000
in September 2023, and reaching 1,500 by November 2023. Current
daily prompt creations have followed an upward trajectory and
peaked thus far at 25,000 prompts per day, as illustrated in Figure 5.
Additionally, the average daily prompts created per user has in-
creased from an initial average of 5 prompts per user per day to 15
prompts per user per day. This increase indicates a more intensive
engagement with our Al tools on a per-user basis.

Daily Prompt Creations

Jul 2023 Aug 2023 Sep 2023 Oct 2023 Nov 2023 Dec 2023
Date

Figure 5: Graph of daily prompt creations over time. Cur-
rently, 15-20K prompts are typically created per day.

Even with extensive user activity in November, our costs remain
reasonable at approximately $1.90 per student per month and $0.05
per prompt, which is a worthwhile investment given the positive
student feedback and enhanced learning experience. Moreover,
companies like OpenAl and Microsoft tend to make credits freely
available for educational usage, helping defray costs.

That being said, we continuously monitor and refine our Al
tools to maximize efficiency while minimizing costs. This approach
includes improving RAG effectiveness, adjusting usage throttling,
and ensuring that the tool accurately addresses students’ queries.

6 FUTURE WORK
6.1 Assessing Code Design

In CS50, assignments are evaluated on correctness, style, and de-
sign. Correctness and style are automatically graded via check50
and style50. check50 verifies if the code meets the specified task
requirements, while style50 assesses the code’s adherence to estab-
lished style guidelines. However, a significant aspect of evaluating
students” work involves assessing code design, which currently
relies on manual grading by human staff. (In CS50’s MOOC, design
is not evaluated at all due to the online course’s sheer scale.) While
critical for understanding students’ proficiency with organized, and
efficient coding, this process poses challenges due to inherent hu-
man subjectivity and the significant time commitment required of
human staff.

Rongxin Liu et al.

To streamline this process and ensure more consistency, we hope
to develop design50, an Altool that automates design grading. This
tool would provide uniform feedback across submissions, reducing
the grading workload for human staff; prior work by others has
already demonstrated this [1]. The idea is to train design50 on
assignments previously graded by humans, enabling it to automati-
cally learn and apply those same standards. Human staff would then
only need to review and confirm the tool’s assessments, making
the grading process faster and more standardized.

6.2 Extending to Other Courses

Following the successful integration of CS50.ai into our summer
course, we expanded its deployment to 10 other CS50-related MOOCs,
which cover a wide range of topics: game design, SQL, and cyberse-
curity are just a few examples. Even though these online courses are
available year-round to tens of thousands of students worldwide,
CS50.ai has enabled us to provide 24/7 support.

To accomplish this, we built a modular configuration system that
automatically updates CS50.ai’s RAG knowledge base and prompt
library, allowing us to tailor our Al tools to a new curriculum and
pedagogical approach specific to each course. In the future, we hope
to leverage this system to further expand CS50.ai’s use in other
courses, within both STEM and the humanities.

7 CONCLUSION

After a summer’s worth of practical application and a full fall se-
mester of intensive stress testing, we have found our suite of Al
tools to be a success for CS50. At the very least, we believe that
our “guardrailed” approach to allowing the use of Al provides a
definite advantage over the alternative of forbidding it altogether.
We hope that providing students with our own Al tools will reduce
the academically dishonest use of other Al tools that are available
online.

Each one of our Al tools is not merely a proof of concept. With
extensive usage statistics and positive student feedback, CS50.ai has
already been deployed to thousands of students around the world,
demonstrating its utility in real-world scenarios. Notwithstanding
improvements that we have yet to make, the integration of Al into
an educational context has shown great promise, particularly in
elevating the accessibility of personalized teaching assistance while
freeing up human staff to handle higher-level pedagogical concerns.

Our long-term vision is to broaden the scope of our Al tools to
other disciplines, allowing the CS50 Duck to interface with peda-
gogy beyond the field of computer science. We hope that CS50’s use
of Al serves as a blueprint for other institutions and courses con-
sidering the potential for generative Al to bolster student learning,
not merely disrupt it. When equipped with the correct guardrails,
Al can revolutionize education for the better.

ACKNOWLEDGEMENTS

Many thanks to Ed, GitHub, Microsoft, and OpenAl for their support
of this work. And many thanks as well to Brenda Anderson, Sophie
Anderson, and Doug Lloyd for their assistance with this work.

Teaching CS50 with Al

REFERENCES

[1] Wei Dai, Jionghao Lin, Flora Jin, Tongguang Li, Yi-Shan Tsai, Dragan Gasevic,

[7

[

and Guanliang Chen. 2023. Can Large Language Models Provide Feedback to
Students? A Case Study on ChatGPT. https://doi.org/10.35542/0sf.io/hcgz]

Ed. 2023. https://edstem.org/

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of Hallucination
in Natural Language Generation. Comput. Surveys 55, 12 (March 2023), 1-38.
https://doi.org/10.1145/3571730

Samia Kabir, David N. Udo-Imeh, Bonan Kou, and Tianyi Zhang. 2023. Who An-
swers It Better? An In-Depth Analysis of ChatGPT and Stack Overflow Answers
to Software Engineering Questions. arXiv:2308.02312 [cs.SE]

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktaschel,
Sebastian Riedel, and Douwe Kiela. 2021. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. arXiv:2005.11401 [cs.CL]

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. Teaching Models to Express
Their Uncertainty in Words. arXiv:2205.14334 [cs.CL]

David J. Malan, Brian Yu, and Doug Lloyd. 2020. Teaching Academic Honesty in
CS50. In Proceedings of the 51st ACM Technical Symposium on Computer Science

[12

=
£

[14

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Education (Portland, Oregon, USA) (SIGCSE °20). Association for Computing Ma-
chinery, New York, NY, USA, 282-288. https://doi.org/10.1145/3328778.3366940
Microsoft. 2023. Azure OpenAl https://azure.microsoft.com/en-us/products/ai-
services/openai-service/ Accessed: 2023-12-12.

OpenAl 2023. GPT-4. https://openai.com/research/gpt-4 Accessed: 2023-10-09.
Ruan Reis, Gustavo Soares, Melina Mongiovi, and Wilkerson L. Andrade. 2019.
Evaluating Feedback Tools in Introductory Programming Classes. , 7 pages.
https://doi.org/10.1109/FIE43999.2019.9028418

Meng-Lin Tsai, Chong Wei Ong, and Cheng-Liang Chen. 2023. Exploring the use
of large language models (LLMs) in chemical engineering education: Building
core course problem models with Chat-GPT. Education for Chemical Engineers
44 (2023), 71-95. https://doi.org/10.1016/j.ece.2023.05.001

Jeremy Weissman. 2023. ChatGPT is a Plague Upon Education.

Mike Wu, Noah Goodman, Chris Piech, and Chelsea Finn. 2021. ProtoTransformer:
A Meta-Learning Approach to Providing Student Feedback.

Carter Zenke and David J. Malan. 2023. Differentiating for Comfort with Com-
puter Science. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education (Toronto, Canada) (SIGCSE °23). Association for Computing
Machinery, New York, NY, USA, 1269. https://doi.org/10.1145/3545947.3573249

https://doi.org/10.35542/osf.io/hcgzj
https://edstem.org/
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2308.02312
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2205.14334
https://doi.org/10.1145/3328778.3366940
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://openai.com/research/gpt-4
https://doi.org/10.1109/FIE43999.2019.9028418
https://doi.org/10.1016/j.ece.2023.05.001
https://doi.org/10.1145/3545947.3573249

	Abstract
	1 Introduction
	2 Motivation
	3 Solutions
	3.1 Explaining Highlighted Code
	3.2 Improving Code Style
	3.3 CS50 Duck
	3.4 CS50 Duck on Ed

	4 Implementation Details
	4.1 Prompts
	4.2 Chat Completion
	4.3 Retrieval-Augmented Generation (RAG)
	4.4 Prevention of Prompt-Injection Attacks
	4.5 Ed Integration via HTTP Requests
	4.6 Usage Throttling

	5 Results
	5.1 Feedback from Students
	5.2 Response Accuracy
	5.3 Usage Summary

	6 Future Work
	6.1 Assessing Code Design
	6.2 Extending to Other Courses

	7 Conclusion
	References

