
Software Engineering in the 
Arts and Humanities

Object-Oriented Programming; React, Part I

October 7, 2019



Reminders

• Lab 4 due Wed 10/9.

• Office hours tomorrow, Tue 10/8.

• Lab 5 releasing on Wed 10/9, due in two weeks on Wed 
10/23.

• No Lab 6 anymore; this is the final one!

• Project proposals due Sun 10/20 (form coming next 
week).
• Now is the time to start thinking about:

• What field you want to be your domain

• What data sets you might want to find/construct

• Who your team will be (size 3-4 is required, no exceptions)



Agenda

• Programming Paradigms

• OOP

• Classes

• Objects

• Methods and properties

• Abstraction

• Inheritance

• React: client-side



Bank Accounts

• A canonical real-world example of a type of problem 
that is difficult to model programmatically without the 
use of objects is a bank account.



Bank Accounts

• A canonical real-world example of a type of problem 
that is difficult to model programmatically without the 
use of objects is a bank account.

• What are some of the things that come to mind when 
you think about what an account is?



Bank Accounts

• A canonical real-world example of a type of problem 
that is difficult to model programmatically without the 
use of objects is a bank account.

• What are some of the things that come to mind when 
you think about what an account is?

• What about some of the interactions that one can have 
with an account?



Paradigms



Paradigms

• Especially if this is only your second computer science 
course, odds are most of the programming you have 
done follows an imperative, procedural paradigm.



Paradigms

• Especially if this is only your second computer science 
course, odds are most of the programming you have 
done follows an imperative, procedural paradigm.

• By imperative, we mean that we as programmers 
explicitly tell the program how to manipulate its state.



Paradigms

• Especially if this is only your second computer science 
course, odds are most of the programming you have 
done follows an imperative, procedural paradigm.

• By imperative, we mean that we as programmers 
explicitly tell the program how to manipulate its state.

• By procedural, we mean that our code is typically 
organized into a series of procedure (function) calls, and 
those procedures manipulate data/state.



Paradigms

• By contrast, React (which we'll be talking about later 
today and Wednesday) uses a declarative paradigm. It's 
results-oriented, and less detail-oriented.

• SQL is the same way, if you think about it!



Paradigms

• By contrast, React (which we'll be talking about later 
today and Wednesday) uses a declarative paradigm. It's 
results-oriented, and less detail-oriented.

• SQL is the same way, if you think about it!

• Object-oriented programming, while still imperative, is 
rather the opposite of procedural.



Paradigms

• By contrast, React (which we'll be talking about later 
today and Wednesday) uses a declarative paradigm. It's 
results-oriented, and less detail-oriented.

• SQL is the same way, if you think about it!

• Object-oriented programming, while still imperative, is 
rather the opposite of procedural.

• Our focus will be on fundamentals. For more, CS51 et al.



Classes



Classes

• The concept of a class allows to conceptualize models to 
define what are effectively templates for instances of 
those models.



Classes

• The concept of a class allows to conceptualize models to 
define what are effectively templates for instances of 
those models.

• Let's think about defining an actual class for those bank 
accounts we talked about earlier.



Objects



Objects

• Reframed in this context, when named classes are in
play, and object is not just a collection of methods and 
properties; it is a manifestation of an instance of a class.



Objects

• We can still use objects in a procedural manner. 
JavaScript can behave as an imperative, procedural 
language, as we've seen.



Objects

• We can still use objects in a procedural manner. 
JavaScript can behave as an imperative, procedural 
language, as we've seen.

function(object);



Objects

• We can still use objects in a procedural manner. 
JavaScript can behave as an imperative, procedural 
language, as we've seen.

function(object);



Objects

• We can still use objects in a procedural manner. 
JavaScript can behave as an imperative, procedural 
language, as we've seen.

object.function();



Objects, recap

• Objects generally have two main "things" that we care 
about.

• Properties

• Methods



Objects, recap

• Objects generally have two main "things" that we care 
about.

• Properties

• Methods

• We can use this combination to use objects to model 
something about the world, such that you can imagine 
an object as being something physically manipulable.



Objects, recap

• Objects generally have two main "things" that we care 
about.

• Properties

• Methods

• We can use this combination to use objects to model 
something about the world, such that you can imagine 
an object as being something physically manipulable.

• By way of analogy, consider a vehicle, a bank account, a 
person.



Objects, recap

• Properties are data fields that describe information 
about the object itself in its current state.



Objects, recap

• Properties are data fields that describe information 
about the object itself in its current state.

• Methods are functions that affect the object in some 
way, either by reading a property, modifying a property, 
or causing the object to interact with something else. 
(another object, for instance).



Objects, recap

• Properties are data fields that describe information 
about the object itself in its current state.

• Methods are functions that affect the object in some 
way, either by reading a property, modifying a property, 
or causing the object to interact with something else. 
(another object, for instance).

• Objects can be manifestations of classes which predefine 
a standard set of properties and methods as a template.



Abstraction



Abstraction

• The example programs we ran earlier in account0 and 
account1 are, while technically correct, flawed. Why?



Abstraction

• The example programs we ran earlier in account0 and 
account1 are, while technically correct, flawed. Why?

• It would be nice for accounts to have methods of "self-
defense," protecting against user error and disallowing 
invalid actions.



Abstraction

• The example programs we ran earlier in account0 and 
account1 are, while technically correct, flawed. Why?

• It would be nice for accounts to have methods of "self-
defense," protecting against user error and disallowing 
invalid actions.

• For this reason, it is generally considered good practice 
to abstract property manipulation away to methods.

• Some languages force this (Java), other languages/libraries 
very strongly suggest it (React).



Inheritance



Inheritance

• Some classes of objects are very similar to others; so 
much so that redefining that class would be redundant.



Inheritance

• Some classes of objects are very similar to others; so 
much so that redefining that class would be redundant.

• In most object-oriented languages, a mechanism that 
can be used to handle exactly this situation is known as 
object inheritance, whereby one object class can 
effectively be built off of another.



Inheritance

• Some classes of objects are very similar to others; so 
much so that redefining that class would be redundant.

• In most object-oriented languages, a mechanism that 
can be used to handle exactly this situation is known as 
object inheritance, whereby one object class can 
effectively be built off of another.

• The newly-defined class inherits all of the properties and 
methods of the parent, and can define more beyond.



Inheritance

class Student extends Person {
constructor() {

super(first, last);
this.id = id;

}

reportInfo() {
// stuff

}

introduce() {
// stuff

}

}



Inheritance superclass

class Student extends Person {
constructor() {

super(first, last);
this.id = id;

}

reportInfo() {
// stuff

}

introduce() {
// stuff

}

}



Inheritance

class Student extends Person {
constructor() {

super(first, last);
this.id = id;

}

reportInfo() {
// stuff

}

introduce() {
// stuff

}

}

subclass



Inheritance

class Student extends Person {
constructor() {

super(first, last);
this.id = id;

}

reportInfo() {
// stuff

}

introduce() {
// stuff

}

}

superclass

constructor



Inheritance

class Student extends Person {
constructor() {

super(first, last);
this.id = id;

}

reportInfo() {
// stuff

}

introduce() {
// stuff

}

}

subclass

property



Inheritance

class Student extends Person {
constructor() {

super(first, last);
this.id = id;

}

reportInfo() {
// stuff

}

introduce() {
// stuff

}

}

subclass

method



Inheritance

class Student extends Person {
constructor() {

super(first, last);
this.id = id;

}

reportInfo() {
// stuff

}

introduce() {
// stuff

}

}

override



React



React

• JavaScript library created in 2013 and maintained by 
Facebook.



React

• JavaScript library created in 2013 and maintained by 
Facebook.

• Goal is to make development of single-page application 
front-ends much cleaner, relying on declarative
programming techniques to reduce tedium.



React

• JavaScript library created in 2013 and maintained by 
Facebook.

• Goal is to make development of single-page application 
front-ends much cleaner, relying on declarative
programming techniques to reduce tedium.

• Heavily built around the techniques of object-oriented 
programming and inheritance.



JSX



JSX

• "JavaScript XML" – looks very similar to HTML itself, but
allows us to basically treat HTML-like syntax as 
JavaScript objects themselves.



JSX

• "JavaScript XML" – looks very similar to HTML itself, but
allows us to basically treat HTML-like syntax as 
JavaScript objects themselves.

const element = (

<div>

Hello, world!

</div>

);



JSX

• "JavaScript XML" – looks very similar to HTML itself, but
allows us to basically treat HTML-like syntax as 
JavaScript objects themselves.

const element = (

<div>

Hello, world!

</div>

);



JSX

• Also possible to nest JavaScript expressions and embed 
them in JSX.

const name = "Doug";

const element = (

<div>

Hello, {name}!

</div>

);



JSX

• Also possible to nest JavaScript expressions and embed 
them in JSX.

const name = "Doug";

const element = (

<div>

Hello, {name}!

</div>

);



Properties
this.props



State
this.state



Lifecycle Methods
componentDidMount()

componentWillUnmount()
...


