Software Engineering in the
Arts and Humanities

Object-Oriented Programming: React, Part |

October 7, 2019



Reminders

Lab 4 due Wed 10/9.

Office hours tomorrow, Tue 10/8.
_Lab 5 releasing on Wed 10/9, due in two weeks on Wed

10/23.

No Lab 6 anymore; this is the final one!

Project proposals due Sun 10/20 (form coming next
week).

« Now is the time to start thinking about:
 What field you want to be your domain
« What data sets you might want to find/construct
« Who your team will be (size 3-4 is required, no exceptions)




Agenda

 Programming Paradigms
« OOP

* Classes

 Objects

« Methods and properties
« Abstraction

* Inheritance

« React: client-side



Bank Accounts

A canonical real-world example of a type of problem
that is difficult to model programmatically without the
use of objects is a bank account.



Bank Accounts

A canonical real-world example of a type of problem
that is difficult to model programmatically without the
use of objects is a bank account.

* What are some of the things that come to mind when
you think about what an account is?



Bank Accounts

A canonical real-world example of a type of problem
that is difficult to model programmatically without the
use of objects is a bank account.

* What are some of the things that come to mind when
you think about what an account is?

* What about some of the interactions that one can have
with an account?



Paradigms



Paradigms

* Especially if this is only your second computer science
course, odds are most of the programming you have
done follows an imperative, procedural paradigm.



Paradigms

* Especially if this is only your second computer science
course, odds are most of the programming you have
done follows an imperative, procedural paradigm.

« By imperative, we mean that we as programmers
explicitly tell the program how to manipulate its state.



Paradigms

* Especially if this is only your second computer science
course, odds are most of the programming you have
done follows an imperative, procedural paradigm.

« By imperative, we mean that we as programmers
explicitly tell the program how to manipulate its state.

By procedural, we mean that our code is typically
organized into a series of procedure (function) calls, and
those procedures manipulate data/state.



Paradigms

* By contrast, React (which we'll be talking about later
today and Wednesday) uses a declarative paradigm. It's

results-oriented, and less detail-oriented.
« SQL is the same way, if you think about it!



Paradigms

* By contrast, React (which we'll be talking about later
today and Wednesday) uses a declarative paradigm. It's

results-oriented, and less detail-oriented.
« SQL is the same way, if you think about it!

 Object-oriented programming, while still imperative, is
rather the opposite of procedural.



Paradigms

* By contrast, React (which we'll be talking about later
today and Wednesday) uses a declarative paradigm. It's
results-oriented, and less detail-oriented.

« SQL is the same way, if you think about it!

 Object-oriented programming, while still imperative, is
rather the opposite of procedural.

 Qur focus will be on fundamentals. For more, CS51 et al.



Classes



Classes

« The concept of a class allows to conceptualize models to
define what are effectively templates for instances of
those models.



Classes

« The concept of a class allows to conceptualize models to
define what are effectively templates for instances of
those models.

e Let's think about defining an actual class for those bank
accounts we talked about earlier.



Objects



Objects

« Reframed in this context, when named classes are in

play, and object is not just a collection of methods and
properties; it is a manifestation of an instance of a class.



Objects

 We can still use objects in a procedural manner.
JavaScript can behave as an imperative, procedural
language, as we've seen.



Objects

 We can still use objects in a procedural manner.
JavaScript can behave as an imperative, procedural
language, as we've seen.

function(object);



Objects

 We can still use objects in a procedural manner.
JavaScript can behave as an imperative, procedural
language, as we've seen.



Objects

 We can still use objects in a procedural manner.
JavaScript can behave as an imperative, procedural
language, as we've seen.

object.function();



Objects, recap

 Objects generally have two main "things” that we care
about.
 Properties
« Methods



Objects, recap

 Objects generally have two main "things” that we care
about.
 Properties
« Methods

 We can use this combination to use objects to model
something about the world, such that you can imagine
an object as being something physically manipulable.



Objects, recap

 Objects generally have two main "things” that we care
about.
 Properties
« Methods

 We can use this combination to use objects to model
something about the world, such that you can imagine
an object as being something physically manipulable.

By way of analogy, consider a vehicle, a bank account, a
person.



Objects, recap

 Properties are data fields that describe information
about the object itself in its current state.



Objects, recap

 Properties are data fields that describe information
about the object itself in its current state.

 Methods are functions that affect the object in some
way, either by reading a property, modifying a property,
or causing the object to interact with something else.
(another object, for instance).



Objects, recap

 Properties are data fields that describe information
about the object itself in its current state.

 Methods are functions that affect the object in some
way, either by reading a property, modifying a property,
or causing the object to interact with something else.
(another object, for instance).

 Objects can be manifestations of classes which predefine
a standard set of properties and methods as a template.



Abstraction



Abstraction

« The example programs we ran earlier in accountO and
accountl are, while technically correct, flawed. Why?



Abstraction

« The example programs we ran earlier in accountO and
accountl are, while technically correct, flawed. Why?

[t would be nice for accounts to have methods of "self-
defense,” protecting against user error and disallowing
Invalid actions.



Abstraction

« The example programs we ran earlier in accountO and
accountl are, while technically correct, flawed. Why?

[t would be nice for accounts to have methods of "self-
defense,” protecting against user error and disallowing
Invalid actions.

* For this reason, it is generally considered good practice
to abstract property manipulation away to methods.

« Some languages force this (Java), other languages/libraries
very strongly suggest it (React).



Inheritance



Inheritance

« Some classes of objects are very similar to others; so
much so that redefining that class would be redundant.



Inheritance

« Some classes of objects are very similar to others; so
much so that redefining that class would be redundant.

* In most object-oriented languages, a mechanism that
can be used to handle exactly this situation is known as
object inheritance, whereby one object class can
effectively be built off of another.



Inheritance

« Some classes of objects are very similar to others; so
much so that redefining that class would be redundant.

* In most object-oriented languages, a mechanism that
can be used to handle exactly this situation is known as
object inheritance, whereby one object class can

effectively be built off of another.

 The newly-defined class inherits all of the properties and
methods of the parent, and can define more beyond.



Inheritance

class Student extends Person {

constructor() {
super(first, last);
this.id = id;

}

reportInfo() {
// stuff
}

introduce() {
// stuff
}



Inheritance superclass

class Student extends Person {

constructor() {
super(first, last);
this.id = id;

}

reportInfo() {
// stuff
}

introduce() {
// stuff
}



Inheritance subclass

class Student extends Person {

constructor() {
super(first, last);
this.id = id;

}

reportInfo() {
// stuff
}

introduce() {
// stuff
}



Inheritance superclass

constructor

class Student extends Person {

constructor() {
super(first, last);
this.id = id;

}

reportInfo() {
// stuff
}

introduce() {
// stuff
}



Inheritance subclass
property

class Student extends Person {

constructor() {
super(first, last);
this.id = id;

}

reportInfo() {
// stuff
}

introduce() {
// stuff
}



Inheritance subclass

method

class Student extends Person {

constructor() {
super(first, last);
this.id = id;

}

reportInfo() {
// stuff
}

introduce() {
// stuff
}



Inheritance override

class Student extends Person {

constructor() {
super(first, last);
this.id = id;

}

reportInfo() {
// stuff
}

introduce() {
// stuff
}



React



React

« JavaScript library created in 2013 and maintained by
Facebook.



React

« JavaScript library created in 2013 and maintained by
Facebook.

 Goal is to make development of single-page application
front-ends much cleaner, relying on declarative

programming techniques to reduce tedium.



React

« JavaScript library created in 2013 and maintained by
Facebook.

 Goal is to make development of single-page application
front-ends much cleaner, relying on declarative
programming techniques to reduce tedium.

 Heavily built around the techniques of object-oriented
programming and inheritance.



JSX



JSX

« "JavaScript XML" - looks very similar to HTML itself, but
allows us to basically treat HTML-like syntax as
JavaScript objects themselves.



JSX

« "JavaScript XML" - looks very similar to HTML itself, but
allows us to basically treat HTML-like syntax as
JavaScript objects themselves.

const element = (
<div>
Hello, world!
</div>

)5



JSX

« "JavaScript XML" - looks very similar to HTML itself, but
allows us to basically treat HTML-like syntax as
JavaScript objects themselves.

const element = (
<div>
Hello, world!
</div>

)5



JSX

* Also possible to nest JavaScript expressions and embed
them in JSX.

const name = "Doug";
const element = (
<div>
Hello, {nhame}!
</div>

)5



JSX

* Also possible to nest JavaScript expressions and embed
them in JSX.

const name = "Doug";
const element = (
<div>
Hello, {name}!
</div>

)5



Properties
this.props



State

this.state



Lifecycle Methods

componentDidMount ()
componentiWillUnmount ()



