Software Engineering in the
Arts and Humanities

JavaScript, continued

September 16, 2019



Functions

function hello()
1

¥

alert('Hello, world!");



Functions

function ()

1
¥

alert('Hello, world!");



Arrow Functions

() =>{
alert('Hello, world!");
¥



Arrow Functions

(x) =>{
alert(x);
}



Arrow Functions

X => {
alert(x);
}



Arrow Functions

X => X * 2






JQuery

 Before ES6 became popular, a common library known as
jQuery was often used by developers because it made
DOM traversal a bit more concise (albeit at the expense
of being more cryptic.)



JQuery

 Before ES6 became popular, a common library known as
jQuery was often used by developers because it made
DOM traversal a bit more concise (albeit at the expense
of being more cryptic.)

* Largely it has fallen out of favor since ES6 has made
streamlining improvements, but you'll still often find it. In
particular, Bootstrap's JS components rely on jQuery.



JQuery

 Before ES6 became popular, a common library known as
jQuery was often used by developers because it made
DOM traversal a bit more concise (albeit at the expense
of being more cryptic.)

* Largely it has fallen out of favor since ES6 has made
streamlining improvements, but you'll still often find it. In
particular, Bootstrap's JS components rely on jQuery.

« Documentation and downloads at


https://jquery.com/

Local Storage

 localStorage.getItem(key);
 localStorage.setItem(key, value);



Asynchronicity

* In most of the examples we've talked about, the
JavaScript code has been running top-to-bottom as it's
encountered.



Asynchronicity

* In most of the examples we've talked about, the
JavaScript code has been running top-to-bottom as it's
encountered.

« Normally this isn't a problem, but it can be a problem if
one of the functions we need to execute might take a
long time (e.g., a network call).



Asynchronicity

const data = fulfillRequest();

console.log(data);



Asynchronicity

const data = fulfillRequest();

console.log(data);



Asynchronicity

const data = fulfillRequest();

console.log(data);



Asynchronicity

const data = fulfillRequest();

console.log(data);



Asynchronicity

const data = fulfillRequest();

console.log(data);



Asynchronicity

const data = fulfillRequest();

console.log(data);



Asynchronicity

fulfillRequest()
.then(data => data.parse())
.then(results => console.log(results))



Asynchronicity

fulfillRequest().then(data => data.parse()).then(results => console.log(results))



Asynchronicity

fulfillRequest()
.then(data => data.parse())
.then(results => console.log(results))



Asynchronicity

fulfillRequest()
.then(data => data.parse())
.then(results => console.log(results))

If you see a structure like this somewhere, this is indicative
of what's known as a JavaScript promise, a mechanism for
ensuring orderly execution of asynchronous code.



Additional Requests

« Using JavaScript, it is possible for our code to make
supplementary HTTP requests without reloading the

page.



Additional Requests

« Using JavaScript, it is possible for our code to make
supplementary HTTP requests without reloading the

page.

* This technique is commonly known as Ajax, and you may
have done it before using XMLHttpRequests.



Additional Requests

« Using JavaScript, it is possible for our code to make
supplementary HTTP requests without reloading the

page.

* This technique is commonly known as Ajax, and you may
have done it before using XMLHttpRequests.

 In ES6B, one of the main mechanisms we'll use to achieve
this with a promise is fetch().



APIs



API

 Application Programming Interfaces are "contracts” of a
sort between a client (us) and, usually, a data provider, to
give our applications the ability to access data that may
be useful to us in some wavy.



API

 Application Programming Interfaces are "contracts” of a
sort between a client (us) and, usually, a data provider, to
give our applications the ability to access data that may
be useful to us in some wavy.

* In this course, we'll be using APIs from many different
service providers and creating projects that leverage
data from those providers.



API

 Application Programming Interfaces are "contracts” of a
sort between a client (us) and, usually, a data provider, to
give our applications the ability to access data that may
be useful to us in some wavy.

* In this course, we'll be using APIs from many different
service providers and creating projects that leverage
data from those providers.

* Learning to parse API docs will be a crucial skill!



Fixer.lO



Google Books



