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function ()
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alert('Hello, world!");



Arrow Functions

() =>{
alert('Hello, world!");
¥



Arrow Functions

(x) =>{
alert(x);
}



Arrow Functions

X => {
alert(x);
}



Arrow Functions

X => X * 2
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JQuery

 Before ES6 became popular, a common library known as
jQuery was often used by developers because it made
DOM traversal a bit more concise (albeit at the expense
of being more cryptic.)

* Largely it has fallen out of favor since ES6 has made
streamlining improvements, but you'll still often find it. In
particular, Bootstrap's JS components rely on jQuery.

« Documentation and downloads at


https://jquery.com/

Local Storage

 localStorage.getItem(key);
 localStorage.setItem(key, value);
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Asynchronicity

* In most of the examples we've talked about, the
JavaScript code has been running top-to-bottom as it's
encountered.

« Normally this isn't a problem, but it can be a problem if
one of the functions we need to execute might take a
long time (e.g., a network call).



Asynchronicity

const data = fulfillRequest();
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const data = fulfillRequest();

console.log(data);



Asynchronicity

fulfillRequest()
.then(data => data.parse())
.then(results => console.log(results))
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Asynchronicity

fulfillRequest()
.then(data => data.parse())
.then(results => console.log(results))

If you see a structure like this somewhere, this is indicative
of what's known as a JavaScript promise, a mechanism for
ensuring orderly execution of asynchronous code.
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« Using JavaScript, it is possible for our code to make
supplementary HTTP requests without reloading the

page.

* This technique is commonly known as Ajax, and you may
have done it before using XMLHttpRequests.

 In ES6B, one of the main mechanisms we'll use to achieve
this with a promise is fetch().



APIs



API

 Application Programming Interfaces are "contracts” of a
sort between a client (us) and, usually, a data provider, to
give our applications the ability to access data that may
be useful to us in some wavy.



API

 Application Programming Interfaces are "contracts” of a
sort between a client (us) and, usually, a data provider, to
give our applications the ability to access data that may
be useful to us in some wavy.

* In this course, we'll be using APIs from many different
service providers and creating projects that leverage
data from those providers.



API

 Application Programming Interfaces are "contracts” of a
sort between a client (us) and, usually, a data provider, to
give our applications the ability to access data that may
be useful to us in some wavy.

* In this course, we'll be using APIs from many different
service providers and creating projects that leverage
data from those providers.

* Learning to parse API docs will be a crucial skill!
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