
Software Engineering in the 
Arts and Humanities

JavaScript

September 11, 2019



Client Server



Client Server

HTTP Request



Client Server

HTTP Request

Python

Node.js



Client Server

HTTP Request

Python

Node.js

HTTP Response



Client Server

HTTP Request

Python

Node.js

HTTP Response

HTML



Client Server

HTTP Request

Python

Node.js

HTTP Response

HTML

JavaScript



JavaScript



JavaScript ES6



<script>
alert('Hello, world!');

</script>



<script>
alert('Hello, world!');

</script>



function hello() {
alert('Hello, world!');

}

Functions



function hello() {
alert('Hello, world!');

}

Functions



DOM



<!DOCTYPE html>

<html>

<head>

<title>Hello, world</title>

</head>

<body>

<h2>Here's my page</h2>

<p>World, hello</p>

</body>

</html>



<!DOCTYPE html>

<html>

<head>

<title>Hello, world</title>

</head>

<body>

<h2>Here's my page</h2>

<p>World, hello</p>

</body>

</html>



<!DOCTYPE html>
<html>

<head>
<title>Hello, world</title>

</head>
<body>

<h2>Here's my page</h2>
<p>World, hello</p>

</body>
</html>

document

html

head

title

"hello, 
world"

body

h2

"Here's my 
page"

p

"World, 
hello"



<!DOCTYPE html>
<html>

<head>
<title>Hello, world</title>

</head>
<body>

<h2>Here's my page</h2>
<p>World, hello</p>

</body>
</html>

document

html

head

title

"hello, 
world"

body

h2

"Here's my 
page"

p

"World, 
hello"



<!DOCTYPE html>
<html>

<head>
<title>Hello, world</title>

</head>
<body>

<h2>Here's my page</h2>
<p>World, hello</p>

</body>
</html>

document

html

head

title

"hello, 
world"

body

h2

"Here's my 
page"

p

"World, 
hello"



<!DOCTYPE html>
<html>

<head>
<title>Hello, world</title>

</head>
<body>

<h2>Here's my page</h2>
<p>World, hello</p>

</body>
</html>

document

html

head

title

"hello, 
world"

body

h2

"Here's my 
page"

p

"World, 
hello"



<!DOCTYPE html>
<html>

<head>
<title>Hello, world</title>

</head>
<body>

<h2>Here's my page</h2>
<p>World, hello</p>

</body>
</html>

document

html

head

title

"hello, 
world"

body

h2

"Here's my 
page"

p

"World, 
hello"



DOM

• The document object is the means by which we can 
interact with and manipulate web sites using JavaScript.



Query Selector

•document.querySelector('tag')

•document.querySelector('#id')

•document.querySelector('.class')



Conditionals

•if

•else

•switch

•?:



Loops

•while

•do ... while

•for

•for ... in

•for ... of



Template Literals

alert(`Counter is at ${counter}!`);



Template Literals

alert(`Counter is at ${counter}!`);



Template Literals

alert(`Counter is at ${counter}!`);



Template Literals

alert(`Counter is at ${counter}!`);



Variables

•const

•let

•var



() => {
alert('Hello, world!');

}

Arrow Functions



x => {
alert(x);

}

Arrow Functions



x => x * 2

Arrow Functions



Asynchronicity

• In most of the examples we've talked about, the 
JavaScript code has been running top-to-bottom as it's 
encountered.



Asynchronicity

• In most of the examples we've talked about, the 
JavaScript code has been running top-to-bottom as it's 
encountered.

• Normally this isn't a problem, but it can be a problem if 
one of the functions we need to execute might take a 
long time (e.g., a network call).



Asynchronicity

const data = fulfillRequest();

console.log(data);

...



Asynchronicity

const data = fulfillRequest();

🕐

console.log(data);

...



Asynchronicity

const data = fulfillRequest();

🕐🕑

console.log(data);

...



Asynchronicity

const data = fulfillRequest();

🕐🕑🕒

console.log(data);

...



Asynchronicity

const data = fulfillRequest();

🕐🕑🕒🕓🕔🕕🕖🕗🕘🕙🕚🕛

console.log(data);

...



Asynchronicity

const data = fulfillRequest();

🕐🕑🕒🕓🕔🕕🕖🕗🕘🕙🕚🕛

console.log(data);

...



Asynchronicity

fulfillRequest()

.then(data => data.parse())

.then(results => console.log(results))

...



Asynchronicity

fulfillRequest().then(data => data.parse()).then(results => console.log(results))

...



Asynchronicity

fulfillRequest()

.then(data => data.parse())

.then(results => console.log(results))

...



Asynchronicity

fulfillRequest()

.then(data => data.parse())

.then(results => console.log(results))

...

If you see a structure like this somewhere, this is indicative 
of what's known as a JavaScript promise, a mechanism for 
ensuring orderly execution of asynchronous code.



Additional Requests

• Using JavaScript, it is possible for our code to make 
supplementary HTTP requests without reloading the 
page.



Additional Requests

• Using JavaScript, it is possible for our code to make 
supplementary HTTP requests without reloading the 
page.

• This technique is commonly known as Ajax, and you may 
have done it before using XMLHttpRequests.



Additional Requests

• Using JavaScript, it is possible for our code to make 
supplementary HTTP requests without reloading the 
page.

• This technique is commonly known as Ajax, and you may 
have done it before using XMLHttpRequests.

• In ES6, one of the main mechanisms we'll use to achieve 
this with a promise is fetch().



APIs



API

• Application Programming Interfaces are "contracts" of a 
sort between a client (us) and, usually, a data provider, to 
give our applications the ability to access data that may 
be useful to us in some way.



API

• Application Programming Interfaces are "contracts" of a 
sort between a client (us) and, usually, a data provider, to 
give our applications the ability to access data that may 
be useful to us in some way.

• In this course, we'll be using APIs from many different 
service providers and creating projects that leverage 
data from those providers.



API

• Application Programming Interfaces are "contracts" of a 
sort between a client (us) and, usually, a data provider, to 
give our applications the ability to access data that may 
be useful to us in some way.

• In this course, we'll be using APIs from many different 
service providers and creating projects that leverage 
data from those providers.

• Learning to parse API docs will be a crucial skill!



Google Books



Lab 1



Lab 1

• Using Harvard Museums' API, create a web application 
for viewing objects and exhibits.



Lab 1

• Using Harvard Museums' API, create a web application 
for viewing objects and exhibits.

• Once you plug in your API key, the application will 
already give you a list of galleries. Your job is to extend 
the app to show lists of objects within a gallery, and then 
when you click on an object, show info about that object.



Lab 1

• Using Harvard Museums' API, create a web application 
for viewing objects and exhibits.

• Once you plug in your API key, the application will 
already give you a list of galleries. Your job is to extend 
the app to show lists of objects within a gallery, and then 
when you click on an object, show info about that object.

• https://github.com/harvardartmuseums/api-docs

https://github.com/harvardartmuseums/api-docs


Lab 1

• It is allowed to work with one partner on this lab, read 
the instructions in the specification for the rules for this.



Lab 1

• It is allowed to work with one partner on this lab, read 
the instructions in the specification for the rules for this.

• Post public questions (i.e., those not containing large 
code snippets) on Piazza using the lab1 tag!


