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DOM

• The document object is the means by which we can 
interact with and manipulate web sites using JavaScript.



Query Selector

•document.querySelector('tag')

•document.querySelector('#id')

•document.querySelector('.class')



Conditionals

•if

•else

•switch

•?:



Loops

•while

•do ... while

•for

•for ... in

•for ... of



Template Literals

alert(`Counter is at ${counter}!`);
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Template Literals

alert(`Counter is at ${counter}!`);



Variables

•const

•let

•var



() => {
alert('Hello, world!');

}

Arrow Functions



x => {
alert(x);

}

Arrow Functions



x => x * 2

Arrow Functions
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Asynchronicity

• In most of the examples we've talked about, the 
JavaScript code has been running top-to-bottom as it's 
encountered.

• Normally this isn't a problem, but it can be a problem if 
one of the functions we need to execute might take a 
long time (e.g., a network call).
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fulfillRequest()

.then(data => data.parse())

.then(results => console.log(results))
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Asynchronicity

fulfillRequest()

.then(data => data.parse())

.then(results => console.log(results))

...

If you see a structure like this somewhere, this is indicative 
of what's known as a JavaScript promise, a mechanism for 
ensuring orderly execution of asynchronous code.
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Additional Requests

• Using JavaScript, it is possible for our code to make 
supplementary HTTP requests without reloading the 
page.

• This technique is commonly known as Ajax, and you may 
have done it before using XMLHttpRequests.

• In ES6, one of the main mechanisms we'll use to achieve 
this with a promise is fetch().
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API

• Application Programming Interfaces are "contracts" of a 
sort between a client (us) and, usually, a data provider, to 
give our applications the ability to access data that may 
be useful to us in some way.

• In this course, we'll be using APIs from many different 
service providers and creating projects that leverage 
data from those providers.

• Learning to parse API docs will be a crucial skill!
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• Using Harvard Museums' API, create a web application 
for viewing objects and exhibits.

• Once you plug in your API key, the application will 
already give you a list of galleries. Your job is to extend 
the app to show lists of objects within a gallery, and then 
when you click on an object, show info about that object.

• https://github.com/harvardartmuseums/api-docs

https://github.com/harvardartmuseums/api-docs
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• It is allowed to work with one partner on this lab, read 
the instructions in the specification for the rules for this.



Lab 1

• It is allowed to work with one partner on this lab, read 
the instructions in the specification for the rules for this.

• Post public questions (i.e., those not containing large 
code snippets) on Piazza using the lab1 tag!


