Summary Structures for XML
David Malan

TR-05-04
2004

]

!
b
\
o

Computer Science Group
Harvard University
Cambridge, Massachusetts

Summary Structures for XML

David Malan

malan@eecs.harvard.edu

1 Introduction

The second of ten goals pursued by the World Wide Web Consortium (W3C) in designing the
eXtensible Markup Language (XML) was “to support a wide variety of applications” [26]. Since its
introduction in 1998, XML has been deployed as a format for the delivery and storage of hierarchi-
cal data, as a declarative language for stylesheets, as a transport mechanism for remote procedure
calls, and more. It is on the first of these applications that this paper focuses. In particular, this
work explores weaknesses in the W3C’s prescription for the serialization and navigation of XML
and offers novel remedies through summary structures.

This paper lays the groundwork for its exploration in Section 2 with an overview of XML. Section 3
exposes inefficiencies in the serialization and navigation of XML, while Sections 4 and 5 propose
remedies for the same. Section 6 makes mention of related work. Section 7 presents areas for
further study. Section 8 concludes.

2 Background

Despite its name, XML is actually a metalanguage with which tag-based markup languages can be
defined. As such, XML enables documents to be self-describing, their content tagged hierarchically
with semantic metadata. A derivative of SGML not unlike HTML, XML allows data to be annotated
with elements, attributes, processing instructions, and comments. Although XML requires that
documents be well-formed (i.e., syntactically valid), conformance to (i.e., validity with respect to)
a document type definition (DTD) [26] or an XML schema [27] is optional. Programmatic access to
an XML document is commonly provided to an application by the Simple API for XML Processing
(SAX) [14], which hands to the application a series of events (each triggered by the parsing of some
portion of the document), or by the Document Object Model (DOM) [23], which returns to the
application the root of an ordinal tree whose nodes capture the document’s structure. Whereas
SAX is appropriate for applications whose needs for a document’s content are fleeting, DOM is
appropriate for applications that require traversals of or non-serialized access to a document’s
structure. Navigation of an XML document’s structure is facilitated by the XML Path Language
(XPath) [24, 28] and the XML Query Language (XQuery) [29].1

2.1 XML

XML requires that a single, root element (delimited by a start-tag and an end-tag) surround a
document’s data, portions of which may be further tagged with elements, so long as those elements

! Although XPath 1.0 has been an official recommendation from the W3C since 1999, XPath 2.0 and XQuery 1.0
are not yet finalized.

are properly nested. In addition to zero or more descendants, an element may have zero or more
attributes, each of whose values must be flanked by a pair of quotation marks. An XML docu-
ment may additionally contain comments and processing instructions (which provide direction to
humans and applications, respectively), neither of which need be encapsulated by the document’s
root element. In fact, an XML document may also contain as its first line an XML declaration,
which specifies the document’s encoding and the version of XML with which it complies.

Although the W3C’s recommendation specifies additional requirements for XML, database.xml
(Figure 1) can be said to be a representative document.

<?xml version="1.0" encoding="UTF-8"7>
<?application data?>
<!-- my database -->
<database>
<actors>
<actor id="00000001">Kaleil Isaza Tuzman</actor>
<actor id="00000002">Tom Herman</actor>
</actors>
<movies>
<movie id="12345678">
<title>Startup.com</title>
<genre>documentary</genre>
<rating>R</rating>
<summary>The rise and fall of the American dream.</summary>
<details>Friends since high school, 20-somethings Kaleil Isaza Tuzman and
Tom Herman have an idea: a Web site for people to conduct business with
municipal governments. This documentary tracks the rise and fall of
govWorks.com from May of 1999 to December of 2000, and the trials the
business brings to the relationship of these best friends.</details>
<year>2001</year>
<director>Chris Hegedus</director>
<studio>Artisan</studio>
<user_rating>4</user_rating>
<runtime>107</runtime>
<actor ref="00000001"/>
<actor ref="00000002"/>
<vhs>19.99</vhs>
<vhs_stock>106</vhs_stock>
<dvd>26.99</dvd>
<dvd_stock>118</dvd_stock>
</movie>

</movies>
</database>

Figure 1: An excerpt from database.xml, a representative XML doc-
ument with 390 elements (40 of which are actor elements, 18 of which
are movie elements, 18 of which are title elements) and 779 text
nodes. Ellipses denote omitted actor and movie elements; elements
of the form <foo bar="baz"/> denote “empty” elements (i.e., ele-
ments with no children).

2.2 Modelling XML

Its first three lines aside, database.xml would seem to constitute a pre-order traversal of some
ordinal tree, the nodes of which are this document’s elements.

It is precisely this view that DOM brings to XML; though, in addition to elements, DOM also
models a document’s attributes, processing instructions, comments, and text as nodes in a tree, all
of which ultimately descend from an implicit, nameless root (the so-called document node). Figure 2
depicts DOM’s view of database.xml. The representative document, then, is but a serialization of

Legend

docunent node

processing instruction
dat abase

comment

el enent

app i cat on "oy dat abase’
attribute

actors novi es
© text node

id d A
*00000001" actor *00000001" actor Tt novi e

Noon 0o

title P studi o user _rating P dvd_st ock

Figure 2: The DOM for Figure 1’s database.xml. Names appear unquoted; values appear quoted.
Ellipses denote omitted elements.

this DOM. In fulfillment of the W3C’s first of ten goals (“XML shall be straightforwardly usable
over the Internet” [26]), the serialized form has proved a useful format for storage and transmission
(over, say, HTTP). But in-memory, pointer- or reference-based DOMs have proved far more useful
for applications requiring actual traversals of or non-serialized access to a document’s nodes, par-
ticularly those which utilize XPath or XQuery for queries.

Unfortunately, the API offers little support for efficient execution of said queries. As DOM’s
definition of nodes (Figure 3) suggests, traversal of DOMs requires navigation of links between
parents and their first (i.e., “left-most”) children; siblings are accessible only via linked lists.

2.3 Querying XML

XPath and XQuery facilitate the specification of hierarchical queries on XML documents through
location paths which are but sequences of steps, each of which indicates an axis and a mode test.
Each step may be refined with zero or more predicates, the effect of which is to filter a query’s

results. For instance, the (annotated) XPath query below, applied to database.xml, would select
all of the titles of movies with a rating of ‘R’ in our database.

/child: :database/child: :movies/child:: movie [child :: rating=‘R’]/child:: title
N e T e T N T A — =

axis node test axis node test axis node test axis node test axis node test
Ve Ve
step step predicate step

step

location path

More precisely, the query would select all title elements that descend, in turn, from database,
movies, and movie elements, the latter of which must have some rating child with value ‘R’. It
turns out that the child axis can be abbreviated with the empty string, so this same node-set can
be selected more succinctly with the below.

/database/movies/movie[rating=‘R’]/title

Although XQuery is capable of more complicated queries, the following XQuery query selects the
same, additionally wrapping the results in a titles element.

<titles>
for $t in document("database.xml")/database/movies/movie/title
return $t

</titles>

The XPath query below, meanwhile, utilizes the preceding axis as well some additional syntax to
select all of the ratings mentioned in the database, with duplicates removed.

/database/movies/movie/rating[not (.=preceding: :*)]

It suffices to say that XPath and, even more so, XQuery offer powerful querying capabilities.
Answering queries efficiently, however, particularly when the document is in serialized form, but
even when the document is modelled as a DOM, is non-trivial.

3 The Problems of Serialization and Traversal

Although no information is lost in the serialization of DOMs to XML, retrieval of certain infor-
mation can be costly. For instance, consider again the retrieval of all titles from database.xml:
discovery of all title elements may require that the entirety of database.xml be parsed!? Despite
the need for a minority of database.xml’s content, a majority of it must be examined.

2The availability of a DTD or schema may allow the parser to terminate before reaching the document’s end, but
the gains may be negligible. Consider database.xml: only once the parser has reached </movies> can it be certain
that no movie (and, in turn, title) elements remain.)

interface Node {
// NodeType

const unsigned short ELEMENT_NODE =1;
const unsigned short ATTRIBUTE_NODE = 2;
const unsigned short TEXT_NODE = 3;
const unsigned short CDATA_SECTION_NODE = 4;
const unsigned short ENTITY_REFERENCE_NODE = 5;
const unsigned short ENTITY_NODE = 6;
const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
const unsigned short COMMENT_NODE = 8;
const unsigned short DOCUMENT _NODE = 9;
const unsigned short DOCUMENT_TYPE_NODE = 10;
const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
const unsigned short NOTATION_NODE = 12;
readonly attribute DOMString nodeName;

attribute DOMString nodeValue;

// raises(DOMException) on setting
// raises(DOMException) on retrieval

readonly attribute unsigned short nodeType;
readonly attribute Node parentNode;
readonly attribute NodeList childNodes;
readonly attribute Node firstChild;
readonly attribute Node lastChild;
readonly attribute Node previousSibling;
readonly attribute Node nextSibling;
readonly attribute NamedNodeMap attributes;
readonly attribute Document ownerDocument;
Node insertBefore(in Node newChild,

in Node refChild)

raises (DOMException) ;
Node replaceChild(in Node newChild,

in Node o0ldChild)

raises (DOMException) ;

Node removeChild(in Node 01dChild)
raises (DOMException) ;
Node appendChild(in Node newChild)
raises (DOMException) ;
boolean hasChildNodes();
Node cloneNode(in boolean deep);
};

Figure 3: The DOM (Level 1) APT’s definition of a Node, in Interface Defini-
tion Language (IDL) [23]. Documents, elements, attributes, comments, and
processing instructions all inherit from this interface.

For large XML documents, the implication may be numerous cache misses or, even worse, disk
accesses, even though much of the document’s content will prove unwanted. Of course, the docu-
ment could be retained in main memory as, for instance, a DOM, in order to expedite subsequent
queries. But the startup cost of parsing the document just once remains. For queries that require
exhaustive traversals of a document’s structure (e.g., /descendant-or-self::*) or for sequences
of queries that require the same, incurrence of said cost may be an unfortunate necessity.

But sparse traversals of XML, particularly in the context of eXtensible Stylesheet Language Trans-
formations (XSLT) [25], are not uncommon. Consider, after all, our simple query for database.xml’s
title elements. Even with a DTD or schema available, a parser may still need to examine most
of database.xml; it cannot seek from one title element to another, since it does not know in
advance the exact locations of those elements, particularly when the content of certain elements
(e.g., details) may be of arbitrary length. Similarly can a parser not seek immediately to the
document’s first movie element; it must first parse the document’s actors element and all of its
descendants.

The serialization of a DOM, then, commits an application to a future reconstruction (or, at least,
re-parsing) of that document’s structure. In other words, it forces the re-computation of work
already performed prior to serialization (e.g., direct association of elements with their children by
way of pointers or references).

A solution to this problem is, of course, lazy parsing: postponing reads of elements, attributes,
processing instructions, or comments until their parsing is absolutely necessary. For Java-based
applications, in which memory allocation tends to be expensive [11], avoiding unnecessary instan-
tiation of DOM nodes through lazy parsing is of particular import.

It is toward this end of laziness that Section 4 proposes a summary structure for XML, derived from
Munro and Raman’s work with balanced parentheses [17]. Unfortunately, this structure fails to
improve performance for certain inputs, the result, in part, of DOM’s limited navigational capabil-
ities. Section 5, then, proposes an additional summary structure reminiscent of the Lore project’s
DataGuides [22, 10, 18, 9], along with modifications to DOM itself, to combat those limitations.

4 Summarizing XML with Balanced Parentheses

It is not uncommon for an XML document to be accompanied by a DTD, a grammar for the
document’s markup. Figure 4, for instance, suggests a DTD for database.xml.

XML Schema, a more recent recommendation from the W3C, offers similar capabilities, with ad-
ditional support for datatypes and more flexible orderings of elements.

Both DTD and XML Schema, then, are designed to specify what the structure of an XML docu-
ment may be. But neither is well-suited for summarizing what the structure of an XML document
actually is. To be sure, DTD is capable of capturing the exact structure of a document by foregoing
use of regular expression operators. For instance, if database.xml happened to contain 5 movie
elements in total, the document’s DTD could define the movies element as the below.

<!ELEMENT movies (movie, movie, movie, movie, movie)>

Unfortunately, the DTD now requires that each child of movies be identical in structure: every
movie element must be defined by the same production, such as the below.

<!ELEMENT movie (title, genre, rating, summary, details, year, director, studio,
user_rating, runtime, actor_ref, actor_ref, vhs, vhs_stock, dvd, dvd_stock)>

Formerly optional elements are now required (in particular quantities, no less), despite XML’s foun-
dation in extensibility. Moreover, explicit (and, really, redundant) enumeration of a document’s
elements is hardly space-efficient. And the cost of parsing the summary remains.

Fortunately, a summarization mechanism more space- and time-efficient exists.

4.1 Balanced Parentheses

In 1999, Munro and Raman [17] proposed a succinct representation for rooted, orginal trees of n
nodes that supports discovery of any node’s parent, next sibling, and previous sibling in constant
time as well as discovery of any node’s ith child in O(i) time, using only 2n + o(n) bits, a near
information-theoretic optimum. (The representation assumes a RAM model with lg n-bit words.)
The representation derives from a depth-first traversal of a tree, such that, for each node, a left
parenthesis (e.g., a 0 bit) is produced “on the way down,” a right parenthesis (e.g., a 1 bit) “on
the way up.”

With respect only to elements, Munro and Raman’s view of database.xml is depicted in Fig-
ure 5.

<!ELEMENT database (actors,movies)>
<IELEMENT actors (actor)x*>

<!ELEMENT actor (#PCDATA)>

<!ATTLIST actor id CDATA #REQUIRED>
<!ELEMENT movies (movie)*>

<!ELEMENT movie (title, genre?, rating, summary, details, year, director+, studio?,
user_rating?, runtime?, actor_ref+, vhs?, vhs_stock?, dvd?, dvd_stock?)>
<!ATTLIST movie id CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>

<!ELEMENT genre (#PCDATA)>

<VELEMENT rating (#PCDATA)>
<!ELEMENT summary (#PCDATA)>
<!ELEMENT details (#PCDATA)>
<!ELEMENT year (#PCDATA)>

<!ELEMENT director (#PCDATA)>
<!ELEMENT studio (#PCDATA)>
<!ELEMENT user_rating (#PCDATA)>
<!ELEMENT runtime (#PCDATA)>
<!ELEMENT actorRef (#PCDATA)>
<!ELEMENT vhs (#PCDATA)>

<!ELEMENT vhs_stock (#PCDATA)>
<!ELEMENT dvd (#PCDATA)>

<!ELEMENT dvd_stock (#PCDATA)>

Figure 4: A DTD for Figure 1’s database.xml.

OO --)COOOOO0O00O0O0O0O0O0O0O0O00O)---))

actors movie

movies
TV
database

Figure 5: Balanced parentheses for database.xml’s elements. Unlabelled pairs represent children
of actors and movie elements. Ellipses denote omitted actor and movie elements.

Balanced parentheses alone, however, provide insufficient support for lazy parsing, which requires
linkage between those parentheses and the sequence of bytes they represent. However, assuming
instead a RAM model with Q(lg V)-bit words, where N is a document’s size in bytes, each single-bit
parenthesis can be replaced with a word, whose highest-order bit signifies a start-tag or end-tag
and whose lower-ordered bits capture the tag’s byte-wise address in the document.

Armed with such a summary, an XML parser can seek in constant time from the start-tag of
one element to that of a sibling, without parsing (and possibly instantiating objects for) the for-
mer’s descendants, as would otherwise be required without any summary. Consider the savings for
database.xml alone: balanced parentheses with addressing enable a parser to seek from <actors>
directly to <movies>, without even traversing the former’s (possibly many) actor children.

Inasmuch as XPath and XQuery processors tend to access a node’s children in turn, constant-
time access to a node’s ith child is unnecessary. Therefore, although Benoit, Demaine, Munro, and
Raman offer exactly that with their depth-first unary degree sequence representation (DFUDS) for
ordinal trees [3], Munro and Raman’s balanced parentheses suffice for XML (and, in fact, can be
more efficiently outputted by a SAX parser).

Of course, this optimization does come at a price: a document of size N must contain an ad-
ditional O(lg N) bits for each of its elements. But the W3C’s tenth goal for XML provides some
reassurance of the probable negligibility of this overhead: “Terseness in XML markup is of minimal
importance” [26]. For small documents that can be parsed quickly, summaries may be of little
benefit anyway and can certainly be omitted.

4.2 Generating Balanced Parentheses

To demonstrate the potential value of this paper’s proposal of balanced parentheses with address-
ing, I decided to implement a proof of concept. Lest this work challenge the definition of XML
itself, I decided it best to implement the summary structure through processing instructions, which
are, by definition, ignored by applications not expecting them.

Although XML does support inclusion of binary data, I opted, in the interests of simplicity and
human-readability, to summarize documents using UTF-8 characters in a processing instruction
called summary. A summarized document’s summary includes two lines of interest, the first of
which contains balanced parentheses for the document’s elements and text nodes, the second of
which contains the addresses of those parentheses’ corresponding elements and text nodes. Albeit
small, Figure 6’s foo.xml is a representative, summarized document.

<7summary
cey>cc >y >y o)y
05672225 31 32 32 38
>
<foo>
<bar baz="qux">quux</bar>
</foo>

Figure 6: A representative, summarized document, foo.xml. Addi-
tional spaces have been added between parentheses for readability. The
address at which the the document’s first start-tag, <foo>, begins, is
considered byte 0. The foo element’s first child, a text node (i.e.,
“\n\t”), begins at byte 5 and ends at byte 6. The baz element’s start-
tag begins at byte 7; the baz element’s end-tag ends at byte 31. And so
on.

Producing a summary is fairly trivial, inasmuch as it, like XML, represents a pre-order traversal of
a DOM’s nodes, a traversal which is already necessary for the serialization of a DOM into XML.? Of
course, prefixing the resulting XML with this processing instruction may require that the former
be buffered until the latter is fully computed, especially if the XML is to be streamed to some
remote parser. For large documents, such a buffer might be overrun, in which case it would not be
unreasonable to append the summary to the XML, provided the recipient needs to write each byte
of the document to memory or disk anyway (and can later seek directly to the summary). The
purpose of the summary, after all, is to provide a parser with constant-time access to any node’s
next sibling, once the node’s document is already in main memory or on disk. Alternatively, the
summary could be stored (or transmitted) as a separate document, as is often done with DTDs
and XML schemas.

4.3 Processing Balanced Parentheses

To test the utility of balanced parentheses for XML, I proceeded to implement in Java a DOM parser
(i.e., a parser which, given an XML document as input, returns the root of a DOM as output).
However, whereas a straightforward implementation of the API might process its input serially,
constructing the entirety of a DOM before returning its root, my parser’s product was a “lazy
DOM.” Rather than instantiate all of a DOM’s nodes, my parser instead parses only the docu-
ment’s summary, effectively storing the processing instruction’s parentheses and addresses in sepa-
rate arrays, thereafter returning the root of a DOM not yet constructed. Only when an application
requests that document node’s first child does my parser’s DOM proceed to instantiate a node for
its root element; only when that root element’s first child is requested does my parser seek directly
to and parse that child’s start-tag, thereafter instantiating its node; only when that child’s next
sibling is requested does my parser seek directly to (via a lookup not unlike Munro and Raman’s
findclose(i) operation) and parse its start-tag, thereafter instantiating its node. In short, nodes are
instantiated on demand. Boolean flags signify whether nodes have already been instantiated.

Although languages like C and C+4 might have offered me greater control over memory man-

3In fact, generation of the summary only requires slight modifications to a typical SAX handler (for, e.g.,
startElement, endElement, and characters events).

agement, Java is, daresay, the world’s language of choice for XML-based applications. It seemed
prudent, then, for the sake of comparison with other implementations of DOM, to develop my lazy
parser in Java.

Rather than implement the W3C’s API from scratch, I opted to enhance and instrument Hillion and
Kormann’s open-source software, DOMJuan 0.1 [12], a partial implementation of DOM (Level-2)
which nonetheless provides full support for XPath queries.

4.4 Benchmarks

To evaluate performance, I proceeded to query my parser’s DOM with three different XPath pro-
cessors, all of which accept as input the root of a DOM: Apache’s Xalan-J 2.1.0 [6], SourceForge’s
Jaxen 1.0-FCS [21], and the Jakarta Project’s JXPath 1.1 [5]. Although newer versions of Xalan-J
exist, all of them convert their input to an alternative, internal representation, a document table
model (DTM), which assigns a number to each node and models parent-child and next-sibling re-
lationships entirely with arrays; DOM-like nodes are not actually instantiated.

The first input to my parser was database.xml. In its complete, original form, this document
contains 390 elements (40 of which are actor elements, 18 of which are movie elements, 18 of
which are title elements) and 779 text nodes. In its original form, the file is 19.2 KB; in its
summarized form (i.e., with the addition of a summary processing instruction), the file is 33 KB.
In the interests of inducing a non-exhaustive search of my parser’s DOM, my choice of queries for
this document was /database/movies/movie/title.

For comparison, I performed this query on a DOM constructed by DOMJuan 0.1 in its origi-
nal form. I also performed the same on two DOMSs constructed by Apache’s Xerces 1.4.0, one
the result of Xerces’s “deferred” mode (in which a document is fully parsed, its content stored in
arrays, but nodes are only instantiated upon demand), the other the result of “non-deferred” mode
(in which all nodes are instantiated prior to queries). Out of curiosity, I also evaluated the perfor-
mance of Xalan-J 2.5.D1’s non-DOM-compliant DTM, using a deferred DOM built by Xerces 2.3.0.

The results appear in Figure 7. The superiority of a summary-enabled DOMJuan (at least for
queries inducing instantiation of, roughly, 62% of a DOM’s nodes) over DOMJuan in its original
form seems clear: overall performance (i.e., the sum of build time and query time) improved by,
roughly, a factor of 2.

Unfortunately, the results also reveal weaknesses in my parser. Clearly, as Xerces-J 1.4.0’s runs
suggests, better performance is possible even without lazy parsing. Yet better performance is pos-
sible if one foregoes DOM altogether and leverages arrays!* Although I opted to modify DOMJuan
instead of Xerces-J 1.4.0 (which is also open-source) in light of the former’s relatively simpler source
code, it seems clear that Apache’s product would have offered a better baseline.

Figure 9 offers some additional results, for executions of /DBI/RESULTSET/ROW/TITLE on dce_-
courses.xml, an SQL dump to XML of the Harvard Extension School’s course catalogue, struc-
tured as Figure 8 suggests. In its complete, original form, this file contains 8,834 elements (552 of

41 suspect DTM’s superior performance stems from its avoidance of instantiation of node-like objects altogether
as well as from its use of compact, randomly accessible arrays, which prove better fits for cache lines.

10

Figure 7: Results of requesting /database/movies/movie/title of database.xml, using various
XPath engines (Xalan-J 2.1.0, Jaxen 1.0-FCS, and JXPath 1.1) and DOMs (DOMJuan 0.1, my
lazy DOM, and Xerces-J 1.4.0 in non-deferred and deferred modes) on a 1.6 GHz Pentium 4 with
768 MB of RAM. (a) Build times, in milliseconds, averaged over 10 runs. (b) Query times, in
milliseconds, averaged over 10 runs. Sums of build and query times appear parenthetically. (c)
Numbers of element and text nodes instantiated. JXPath appears to instantiate a number of nodes
unnecessarily. (d) Query time (and sum of build and query times), in milliseconds, averaged over
10 runs, using Xalan-J 2.5.D1’s DOM-incompliant DTM and Xerces-J 2.3.0’s deferred mode; build

time was 149 ms.

11

DOMJuan | My Lazy Parser | Xerces (non-deferred) | Xerces (deferred)
808 117 255 221
(a)
DOMJuan | My Lazy Parser | Xerces-J (non-deferred) | Xerces-J (deferred)
Xalan-J | 58 (866) 309 (423) 72 (327) 118 (339)
Jaxen | 95 (903) 335 (449) 92 (347) 119 (340)
JXPath | 171 (979) 411 (525) 173 (428) 201 (422)
(b)
DOMJuan | My Lazy Parser | Xerces-J (non-deferred) | Xerces-J (deferred)
Xalan-J 1,169 719 1,169 719
Jaxen 1,169 719 1,169 719
JXPath 1,169 737 1,169 737
()
Xerces-J (deferred)
Xalan-J (DTM) 134 (283)
(d)

<DBI driver="fasdv">
<RESULTSET statement="select acad_year, term_id, crn, term_name,
course_group, course_num, title, course_head_name, course_head_title,
meeting_days, meeting_begin, meeting_end, location, description,
course_group_name from dcero.course where meeting_days is NOT NULL">
<ROW>
<ACAD_YEAR>2002</ACAD_YEAR>
<TERM_ID>2</TERM_ID>
<CRN>21701</CRN>
<TERM_NAME>Spring Term 2003</TERM_NAME>
<COURSE_GROUP>CSCI</COURSE_GROUP>
<COURSE_NUM>E-259</COURSE_NUM>
<TITLE>Developing e-Business Applications Using XML</TITLE>
<COURSE_HEAD_NAME>David Malan</COURSE_HEAD_NAME>
<COURSE_HEAD_TITLE>AB, Harvard University</COURSE_HEAD_TITLE>
<MEETING_DAYS>M</MEETING_DAYS>
<MEETING_BEGIN>1935</MEETING_BEGIN>
<MEETING_END>2135</MEETING_END>
<LOCATION>Sever Hall 103</LOCATION>
<DESCRIPTION>Intended for students with previous Java programming
and web development experience, this course introduces XML as a
key enabling technology in today’s e-business applications. Students
will learn the fundamentals of XML: schemas, XSL stylesheets, and
programmatic access using standard APIs. Building on these foundations,
the course will explore in detail a number of case studies that utilize
XML in e-business: e-commerce, web personalization, portals, and web
services. Data modeling techniques in XML will be introduced in the
context of the case studies. Prerequisites: CSCI E-12, CSCI E-50b,
and CSCI E-119 or equivalents.</DESCRIPTION>
<COURSE_GROUP_NAME>Computer Science</COURSE_GROUP_NAME>
</ROW>

</RESULTSET>
</DBI>

Figure 8: An excerpt from dce_courses.xml, an XML document
containing 8,834 elements (552 of which are ROW elements, 552 of which
are TITLE elements) and 17,665 text nodes. Ellipses denote additional
ROW elements.

which are ROW elements, 552 of which are TITLE elements) and 17,665 text nodes. In its original
form, the file is 669 KB; in its summarized form the file is 1.05 MB.?

Although selection of this catalogue’s TITLE elements does induce instantiation of every element in
dce_courses.xml, my lazy parser nonetheless avoids parsing and instantiating thousands of text
nodes (i.e., the children of every TITLE element’s siblings). Again, as Figure 9(d) reveals, my lazy
parser again offers twice the performance of the original DOMJuan but fails to match Apache’s
performance.

I make no claim that my queries are representative of XPath and XQuery in general. In fact,
truly representative queries may not exist, given the languages’ flexibility and XML’s extensibility.
But these queries are certainly not of uncommon form. And, inasmuch as they both induce only

5Clearly, the overhead of storing parentheses and addresses as UTF-8 characters becomes significant for large files.
But, again, said representation was employed only for the sake of readability; more efficient, binary encodings are
possible.

12

Figure 9: Results of requesting /DBI/RESULTSET/ROW/TITLE of dce_courses.xml, using various
XPath engines (Xalan-J 2.1.0, Jaxen 1.0-FCS, and JXPath 1.1) and DOMs (DOMJuan 0.1, my lazy
DOM, and Xerces-J 1.4.0 in non-deferred and deferred modes) on a 1.6 GHz Pentium 4 with 768 MB
of RAM. (a) Build times, in milliseconds, averaged over 10 runs. (b) Query times, in milliseconds,
averaged over 10 runs. Sums of build and query times appear parenthetically. JXPath postpones
actual selection of nodes until serialization of the query’s results, the effect of which is to inflate
JXPath’s “query times” because of I/O stalls. (c) Numbers of element and text nodes instantiated.
Again, JXPath appears to instantiate a number of nodes unnecessarily. (d) Query time (and sum
of build and query times), in milliseconds, using Xalan-J 2.5D1’s DOM-incompliant DTM and

Xerces-J 2.3.0’s deferred mode; build time was 355 ms.

13

DOMJuan | My Lazy Parser | Xerces-J (non-deferred) | Xerces-J (deferred)
5887 400 722 633
(a)
DOMJuan | My Lazy Parser | Xerces-J (non-deferred) | Xerces-J (deferred)
Xalan-J | 128 (6,015) | 2434 (2,834) 139 (361) 277 (910)
Jaxen | 183 (6,070) | 2,506 (2,906) 200 (922) 246 (879)
JXPath | 816 (6,703) | 3,730 (4,130) 855 (1,577) 1,062 (1,695)
(b)
DOMJuan | My Lazy Parser | Xerces-J (non-deferred) | Xerces-J (deferred)
Xalan-J 26,499 18,221 26,499 18,221
Jaxen 26,499 18,221 26,499 18,221
JXPath 26,499 18,773 26,499 18,773
(c)
Xerces-J (deferred)
Xalan-J (DTM) 473 (828)
(d)

partial traversal of a document’s structure, they do confirm gains possible from lazy parsing.

5 Summarizing XML with Representative Objects

Unfortunately, lazy parsing, albeit aided by balanced parentheses, is inadequate to combat the
costs of sparse queries on DOMs. Consider again the number of nodes visited (not to mention
instantiated) in search of database.xml’s titles. Not only were the title elements’ ancestors
visited, so were the siblings of every title element! Similarly was the node of each element in
dce_courses.xml visited. Even with lazy parsing, more than 700 nodes were visited for the sake of
18 elements in database.xml; for the sake of 552 elements in dce_courses.xml, more than 18,000
nodes were visited.

This inefficiency results from DOM’s limited navigational support.

5.1 Twins and Cousins

Although DOM captures parent-child and next-sibling relationships, it fails to capture relationships
among twins and cousins, where two nodes shall be said to be twins if they are of siblings of like
name and two nodes shall be said to be cousins if they are of like name and are children of two
siblings or of two cousins.

Were DOM to offer direct links between twins and cousins, XPath and XQuery expressions of
the form /foo/.../baz (where the ellipsis denotes one or more steps along the child axis) could
be evaluated far more efficiently in cases where two or more baz elements descend from distinct
(like-named) nodes. For instance, selection of /database/movies/movie/title would only require
discovery of one such title element; the rest could be found through a traversal of twin and cousin
edges.

Predicates do threaten the efficiency of this approach, insofar as twin- and cousin-based retrieval
might select nodes with one or more ancestors that fail to satisfy some predicate. However, this
work proposes to eliminate said inefficiency through differentiation of cousins into first cousins,
second cousins, third cousins, and so on, where two cousins shall be said to be first cousins if their
parents are siblings, second cousins if their parents are first cousins, third cousins if their parents
are second cousins, and so on.

5.2 Representative Objects

Unfortunately, edges among twins and cousins are insufficient for efficient discovery of like-named
nodes, inasmuch as discovery of the first in a series of twins and cousins may require a nearly
exhaustive search of a document’s structure. However, efficient discovery is possible with represen-

tative objects, summary structures that provide concise descriptions of hierarchical data [18].

The implementation of such structures for XML is straightforward.

14

Legend

Q docunment node
|:| el ement
dat abase dat abase
novi es novi es
\ -
movi e movi e movi e movi e
title 3 title title title
R next coyg; next Cousi n e

Figure 10: A SUMDOM for database.xml; the representative object appears at left. Ellipses and
dashed edges imply omitted nodes.

5.3 Implementing Representative Objects

With minimization of node visits (rather than time, per se) now my aim, I decided DOMJuan an
acceptable codebase for an alternative to DOM. Putting aside my lazy parser, [proceeded to imple-
ment SUMDOM, a superset of DOM with constant-time support for getPreviousTwin(), getNext-
Twin(), getPreviousCousin(), and getNextCousin() operations. SUMDOM additionally maintains
a summary structure (not unlike the Lore project’s DataGuides [22, 10, 18, 9]) which is essentially
a DOM in which twins and cousins are collapsed into a single node. Each node in the summary
maintains a link to the first of the nodes it represents, thereby enabling queries for cousins in
O(k + 1) time, where k is the number of steps in a query and [is the number of cousins to be
retrieved. Each node in the summary also maintains a link to the last of the nodes it represents,
thereby enabling construction of a SUMDOM in time proportional to that required by a (non-lazy)
DOM. Figure 10 depicts a SUMDOM for database.xml.

5.4 Benchmarks

In order to evaluate the performance of SUMDOM, I implemented a simple engine for evaluating
(predicate-less) XPath queries. Given some query of the form /foo/. . ./baz along with the root of
a SUMDOM as input, the engine traverses the SUMDOM’s summary structure in accordance with
the query’s steps, thereafter following any links to twins and cousins. As was expected, SUMDOM
expedites navigation significantly (Figure 11). Needless to say, for documents devoid of twins and
cousins, the API doubles the number of nodes instantiated and fails to accelerate retrieval. But for
applications whose principal concern is minimization of (predicate-less) queries’ execution times,
SUMDOM reduces edge traversals to a near minimum.

15

Document Query DOM | SUMDOM
database.xml /database/movies/movie/title 698 21
dce_courses.xml | /DBI/RESULTSET/ROW/TITLE 17,666 555

Figure 11: Numbers of edges traversed by DOM and SUMDOM.

5.5 Differentiating Cousins

Section 5.4 took care to qualify SUMDOM as presently optimized only for predicate-less queries.
Unfortunately, predicates, particularly ones among a location path’s early steps, can degrade SUM-
DOM’s performance significantly. Consider, for instance, the document portrayed in Figure 12,
whose elements are numbered (in XML’s so-called document order) for the sake of discussion.

Selecting Figure 12’s quux elements via SUMDOM would involve 4 steps along SUMDOM'’s sum-
mary structure and 16 traversals of links between pairs of twins and cousins. Suppose, however, that
node 2 failed to satisfy some predicate in a k-step query (e.g., /foo/bar[@id=‘2’]/baz/qux/quux,
where k = 5 and @ denotes the attribute axis), the implication of which is that nodes 5, 6, 8, 9,
12, 13, 15, and 16 should be omitted from the query’s results. Ideal would be a SUMDOM that
enables a query processor to reach node 20 from node 5 in constant time (or at least O(k) time,
where, again, k is the query’s length), as it might via a third-cousin edge. Efficient construction
of ordinal trees in which each node maintains an arbitrary number of links to cousins remains an
area for further study. However, XML’s sixth design goal does mitigate this challenge: “XML
documents should be human-legible and reasonably clear” [26]. Inasmuch as XML documents, in
the interests of readability, are unlikely to boast more than n levels of nesting, where n is small, it
may suffice, for real-world applications, to store no more than n links to cousins for each node or,
alternatively, to maintain undifferentiated relationships among cousins with skip lists [20].

6 Related Work

Although this work is the first to propose an embedded summary structure for the sake of lazy
parsing, it is not the first to propose lazy parsing (for XML) itself. Xerces has long supported a
deferred DOM; but, again, even that model requires that its input be parsed fully and stored in
various arrays. Noga, Schott, and Lowe, meanwhile, have proposed a parser that scans its input
for tag delimiters (i.e., < and >) in order to construct arrays not unlike Xerces’; however, actual
lexing of the input is performed only on demand [19]. In effect, Noga, Schott, and Lowe’s parser
recomputes the structure of a document, without assistance from any summary.

Just as this work proposes an alternative to DOM, so have others proposed alternatives.
Apache’s Xalan-J, recall, maintains a document’s structure with DTM [7]. But DTM owes its
performance more to issues of memory management than it does to any rethinking of ordinal trees;
in fact, the API it exposes to Xalan’s XPath processor is essentially the same as that offered by
DOM.

JDOM [13] offers an alternative to DOM, but only to the extent that it tailors the API to Java

16

Legend

O document node
l:l el enent
@ attribute

9 12 13 15 16 20 21 23 24 27 28 30 31
‘ quux H quux ‘ ‘ quux H quux H quux H quux ‘ ‘ quux H quux ‘ ‘ quux H quux ‘ ‘ quux H quux H quux H quux H quux H quux ‘
~ : /
e S 7 /
o PN / /
e O 2 /
st \0° L,/
RN PR ,
~ - (\co ,
N T e 7’
N - B e
\\ //
AN IR
~
S - 00\35
\\\\ ////\K\\‘

Figure 12: A document for which edges among twins and cousins, such as those pictured, could prove
of great benefit, particularly for queries like /foo/bar[@id=‘2’]/baz/qux/quux. Names appear
unquoted; values appear quoted. Elements are numbered in document order. For readability, only
one set of twins and cousins is pictured; a representative object, which would facilitate access to
node 5 in four steps, is not shown.

17

conventions. The tree it maintains is essentially that maintained by DOM.

In contrast, eXist [15], an open-source XML database, maintains indices (reminiscent of this work’s
representative objects) in which the names of elements and attributes are mapped to arrays of
node identifiers, each of which represents a node with that name. However, eXist stops short of
evaluating queries “from the bottom-up” (e.g., locating all quux elements, thereafter filtering effi-
ciently based on the truth of previous steps’ predicates) [16]. Rather, “eXist uses a kind of mixed
approach to resolve ancestor-descendant steps in XPath subexpressions, because for two sets of
nodes, it conceptually starts at the descendant node and goes up the tree to find the corresponding
ancestor.”6

Although Tamino [1], a commercial product, is rumored to take some sort of bottom-up approach,
details are not public.”

To my knowledge, efficient evaluation of XPath and XQuery queries through representative ob-
jects, supported by twins and cousins, has yet to be implemented fully in any XML processor or
database.

7 Further Study

Efficient discovery a node’s ¢th cousin in ordinal trees is an interesting problem, one that would
seem to transcend this work’s foundation in XML.

Also of interest is the question of efficient layout for DOM, or variants thereof, in multi-level
memory hierarchies. Chilimbi, Davidson, and Larus, for instance, have provided evidence of the
effect of data’s organization on cache performance [4]. Gil and Itai have explored efficient packing
of trees in contexts in which block size is known [8]. Building upon that work, Alstrup, Bender,
Demaine, Farach-Colton, Munro, Rauhe, and Thorup have extended approximately optimal algo-
rithms to the cache-oblivious setting, in which said size is unknown [2]. But the latter both assume
a known probability distribution on a tree’s nodes. To the extent that queries are not known in
advance, DOMs (or variants thereof) which dynamically adjust their nodes’ locations in memory
might prove an interesting area of study. Subjectivity to insertions and deletions would seem to
render the problem all the more interesting.

Incorporation of this work’s two proposed summary structures for XML, balanced parentheses

and representative objects, into a single implementation might also prove a valuable endeavor,
particularly since efficient construction of the latter requires modifications to the former.

8 Conclusion

This work has proposed two summary structures for XML in order to mitigate weaknesses in the
W3C’s prescription for the serialization and traversal of of the same.

SPersonal correspondence with Wolfgang Meier, eXist’s author.
"Personal correspondence with Michael Kay, author of SAXON, an XSLT processor.

18

The first structure, balanced parentheses, facilitates lazy parsing of an XML document by captur-
ing the document’s structure prior to serialization. Support for this structure is already available
through processing instructions; incorporation of the structure into documents, then, is straight-
forward.

The second structure, representative objects, enables efficient execution of location path-based
queries through the introduction of twins and cousins to DOM. Yet greater efficiency might be
possible through differentiation of cousins.

Of course, a larger question of XML’s fundamental appropriateness for hierarchically structured
data and queries thereof remains. But this work does provide evidence that more efficient serial-
ization and traversal of XML is possible, despite this metalanguage’s disrespect for terseness.

References

[1] Software AG. Tamino XML Server. http://www.softwareag. com/tamino/.

[2] Stephen Alstrup, Michael A. Bender, Erik D. Demaine, Martin Farach-Colton, J. Tan Munro,
Theis Rauhe, and Mikkel Thorup. Efficient tree layout in a multilevel memory hierarchy.
Manuscript, November 11 2002.

[3] David Benoit, Erik D. Demaine, J. Ian Munro, and Venkatesh Raman. Representing trees of
higher degree. In Frank Dehne, Arvind Gupta, Jorg-Riidiger Sack, and Roberto Tamassia,
editors, Proceedings of the 6th International Workshop on Algorithms and Data Structures
(WADS’99), volume 1663 of Lecture Notes in Computer Science, pages 169-180, Vancouver,
British Columbia, Canada, August 11-14 1999.

[4] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious structure definition.
In SIGPLAN Conference on Programming Language Design and Implementation, pages 13-24,
1999.

[5] The Apache Software Foundation. JXPath. http://jakarta.apache.org/commons/jxpath/.
[6] The Apache Software Foundation. Xalan-Java. http://xml.apache.org/xalan-j/.

[7] The Apache Software Foundation. Xalan-Java DTM. http://xml.apache.org/xalan-j/
dtm.html.

[8] Joseph Gil and Alon Itai. How to pack trees. J. Algorithms, 32(2):108-132, 1999.

[9] R. Goldman and J. Widom. Summarizing and Searching Sequential Semistructured Sources.
Technical report, Stanford University, March 2000.

[10] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. In Matthias Jarke, Michael J. Carey, Klaus R. Dittrich,
Frederick H. Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld, editors, VLDB’97,
Proceedings of 23rd International Conference on Very Large Data Bases, pages 436-445. Mor-
gan Kaufmann, 1997.

19

Jonathan Hardwick. Java Microbenchmarks. http://www.cs.cmu.edu/~jch/java/
benchmarks.html.

Stéphane Hillion and Thierry Kormann. DOMJuan - A DOM Level 2 implementation. http:
//koala.ilog.fr/domjuan/.

Jason Hunter and Brett McLaughlin. JDOM. http://www. jdom.org/.
David Megginson. http://www.saxproject.org/.
Wolfgang Meier. Open Source XML Database. http://exist-db.org/.

Wolfgang Meier. eXist: An Open Source Native XML Database. In Erhard Rahm B. Chaudri,
Mario Jeckle and Rainer Unland, editors, Web, Web-Services, and Database Systems, 2593,
Erfurt, Germany, 2002. Springer LNCS Series.

J. Ian Munro and Venkatesh Raman. Succinct Representation of Balanced Parentheses, Static
Trees and Planar Graphs. In IEEE Symposium on Foundations of Computer Science, pages
118-126, 1997.

Svetlozar Nestorov, Jeffrey D. Ullman, Janet L. Wiener, and Sudarshan S. Chawathe. Repre-
sentative objects: Concise representations of semistructured, hierarchial data. In ICDE, pages
79-90, 1997.

Markus L. Noga, Steffen Schott, and Welf Lwe. Lazy xml processing. In Proceedings of the
2002 ACM symposium on Document engineering, pages 88-94. ACM Press, 2002.

William Pugh. Skip lists: A probabilistic alternative to balanced trees. In Workshop on
Algorithms and Data Structures, pages 437-449, 1989.

James Strachan. Project: jaxen. http://sourceforge.net/projects/jaxen/.
Jennifer Widom. Lore. http://www-db.stanford.edu/lore/.

World Wide Web Consortium. Document Object Model (DOM) Technical Reports. http:
//www.w3 . org/DOM/DOMTR.

World Wide Web Consortium. XML Path Language (XPath), Version 1.0, W3C Recommen-
dation. http://www.w3.o0rg/TR/xpath, November 1999.

World Wide Web Consortium. XSL Transformations (XSLT'), Version 1.0, W3C Recommen-
dation. http://www.w3.org/TR/xslt, November 1999.

World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation. http://www.w3.org/TR/REC-xml, October 2000.

World Wide Web Consortium. XML Schema Part 0: Primer, W3C Recommendation. http:
//www.w3.org/TR/xmlschema-0/, May 2001.

World Wide Web Consortium. XML Path Language (XPath), Version 2.0, W3C Working
Draft. http://www.w3.org/TR/xpath20/, November 2002.

World Wide Web Consortium. XQuery 1.0: An XML Query Language, W3C Working Draft.
http://www.w3.org/TR/xquery/, November 2002.

20

